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Abstract. Construction of complex array operations by composition of
more basic ones allows for abstract and concise specifications of algo-
rithms. Unfortunately, näıve compilation of such specifications leads to
creation of many temporary arrays at runtime and, consequently, to poor
performance characteristics.
This paper elaborates on a new compiler optimization, named with-
loop-scalarization, which aims at eliminating temporary arrays in the
context of nested array operations. It is based on with-loops, a versatile
array comprehension construct used by the functional array language
SaC both for specification as well as for internal representation of array
operations.
The impact of with-loop-scalarization on the runtime performance
of compiled SaC code is demonstrated by several experiments involving
support for arithmetic on arrays of complex numbers and the application
kernel FT from the NAS benchmark suite.

1 Introduction

Dedicated array languages like Apl [19], J [20], or Nial [21] allow for very
abstract and concise specifications when processing large amounts of data ho-
mogeneously structured along multiple orthogonal axes. They provide large sets
of built-in operations, which are universally applicable to arrays of any rank
(number of axes) and of any shape (extent along individual axes). These ba-
sic operations form the building blocks for construction of entire application
programs in a step-wise and layered process.

The advantages of this programming style are manifold. Arrays are treated as
conceptual entities with certain algebraic properties rather than as loosely cou-
pled collections of elements. Operations handle entire arrays in a homogeneous
way; explicit indexing, which may be considered the most error-prone property
of conventional array processing, is almost completely avoided.

However, this specificational advantage does not come for free. Compilation
of such specifications turns out to be rather difficult as soon as runtime perfor-
mance matters. Besides the challenge of compiling the basic array operations
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into efficiently executable code [1, 7, 4, 26] the main problem is the composi-
tional nature of programs in general. Separate compilation of individual basic
array operations requires all intermediate results of a complex operation to be
explicitly created. While in a scalar language such values can be held in registers,
in an array language entire arrays have to be created. As this incurs substantial
overhead, one of the key challenges is to develop techniques which avoid actual
creation of such intermediate arrays at runtime.

Different sources of intermediate arrays may be distinguished. The most
prominent source are array operations that are defined as sequences of basic
operations where, in a pipelined fashion, the result of one basic operation di-
rectly serves as argument of the subsequent one. As a simple example, consider
the selection of the inner elements of an array. In most array languages this can
be specified as an expression that takes all but the last elements of an (interme-
diate) array that itself is derived from the initial array by dropping the very first
elements along each axis. Näıve compilation explicitly creates the intermediate
array that contains all but the first elements. To avoid the associated overhead,
several elaborate techniques have been developed. They reach from drag-along
and beating [1] to with-loop-folding [24].

A different source of intermediate arrays are nested operations on arrays.
Often it often turns out to be convenient to consider an n-dimensional array to be
an n−m-dimensional array of m-dimensional subarrays. Prominent examples are
applications where individual array elements are arrays themselves, e.g. arrays
of complex numbers or vectors of linear functions each being represented by a
matrix. Further examples include operations that are to be applied to selected
axes of an array only, i.e., an outer operation splits up a given array, applies
an inner operation to individual subarrays, and recombines individual results
into the overall result. In all these cases näıve compilation creates a temporary
representation for each intermediate subarray.

This paper presents on optimization technique called with-loop-scalar-
ization, which aims at avoiding this kind of intermediate arrays. It is based
on a meta representation for high-level array operations called with-loop, as
proposed in the context of the functional array programming language SaC (for
Single Assignment C) [26]. The basic idea of with-loop-scalarization has
been sketched out in the context of SaC’s axis control notation [16], a with-
loop-based technique for applying array operations to selected axes of an array.
The particular contributions of this paper are

– a new optimization scheme which is based on a more flexible meta representa-
tion called multi-generator with-loop, rather than on ordinary with-loops.
This allows with-loop-scalarization to interact with several other op-
timizations such as with-loop-folding, which turns out to be mutually
beneficial.

– extended auxiliary transformation schemes that further enhance the appli-
cability of with-loop-scalarization in general.

– investigations on the performance impact of with-loop-scalarization in
the current SaC compiler release.
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The remainder of this paper is organized as follows. Section 2 provides a
brief introduction into the basic concepts of SaC for those readers who are not
yet familiar with the language. Multi-generator with-loops as the basis for the
definition of with-loop-scalarization are sketched out in Section 3. Section 4
introduces the basic compilation scheme realizing with-loop-scalarization,
while Section 5 discusses the auxiliary transformation schemes. The impact of
with-loop-scalarization on runtime performance is investigated in Section
6. After covering some related work in Section 7, Section 8 concludes and outlines
directions of future work.

2 SAC – A Brief Introduction

The core language of SaC is a functional subset of C, extended by n-dimensional
arrays as first class objects. Despite the different semantics, a rule of thumb for
SaC code is that everything that looks like C also behaves as in C. Arrays are
represented by two vectors, a shape vector that specifies an array’s extent wrt.
each of its axes, and a data vector that contains all its elements. Array types
include arrays of fixed shape, e.g. int[3,7], arrays with a fixed number of di-
mensions, e.g. int[.,.], and arrays with any number of dimensions, i.e. int[+].

In contrast to other array languages SaC provides only a very small set of
built-in operations on arrays. Basically, they are primitives to retrieve data per-
taining to the structure and contents of arrays, e.g. an array’s rank (dim(array)),
its shape (shape(array)), or individual elements (array[index-vector]). Aggre-
gate array operations are specified in SaC itself using powerful array compre-
hensions, called with-loops. Their (simplified) syntax is outlined in Fig. 1.

WithLoopExpr ⇒ with ( Generator ) [ AssignBlock ] Operation

Generator ⇒ Expr RelOp Id RelOp Expr [ Filter ]
RelOp ⇒ < | <=

Filter ⇒ step Expr [ width Expr ]
Operation ⇒ genarray ( Expr , Expr ) | ...

Fig. 1. Syntax of with-loop expressions.

A with-loop basically consists of two parts: a generator and an operation.
The generator defines a set of index vectors along with an index variable repre-
senting elements of this set. Two expressions, which must evaluate to vectors of
equal length, define lower and upper bounds of a rectangular index vector range.
An optional filter may further restrict this selection to grids of arbitrary width.
Let a, b, s, and w denote expressions that evaluate to vectors of length n, then

( a <= i vec < b step s width w )
defines the following set of index vectors:

{i vec | ∀j∈{0,...,n−1} : aj ≤ i vecj < bj ∧ (i vecj − aj) mod sj < wj} .
The operation specifies the computation to be performed for each element

of the index vector set defined by the generator. Let shp denote a SaC expres-
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sion that evaluates to a vector, and let expr denote any SaC expression. Then
genarray( shp, expr) defines an array of shape shp whose elements are the
values of expr for all index vectors from the generator-specified set and 0 oth-
erwise. In order to simplify specification of complex expressions, the operation
part may be preceded by a block of local variable definitions, and expr may be
defined in terms of these variables.

Additional types of operation parts allow definition of various map- and fold-
like operations. Since they are not needed in the scope of this paper, we omit
their definition here and refer to [26], which provides a detailed introduction into
SaC. A case study on a non-trivial problem investigating both the programming
style and the resulting runtime performance is presented in [14]. Additional
information on SaC is available at http://www.sac-home.org/.

3 Multi-generator With-Loops

As pointed out in the introduction, with-loop-folding [25], a SaC-specific
optimization technique plays a vital role in achieving high runtime performance.
Its purpose is to avoid the creation of intermediate arrays by condensing con-
secutive with-loops into a single one according to the well-known equivalence

(map f) ◦ (map g) ⇐⇒ map (f ◦ g) .
A simple with-loop-folding example is shown in Fig. 2: selection of all inner
elements of an array by a combination of take and drop For reasons of simplicity,
we use constant boundary expressions in this example and expect the argument
array A to be of shape [100,100]. While take([99,99],A) “takes” the first 99
rows and columns of the argument matrix A, the subsequent drop([1,1],...)
“drops” the first row and the first column of the intermediate matrix. Inlining
both take and drop yields two consecutive with-loops; subsequent with-loop-
folding transforms them into a single operation that selects all inner elements
of A directly, i.e. without creating an intermediate array.

The example shown in Fig. 2 represents a trivial case of with-loop-folding
as the second generator defines a subset of index positions of the first generator.

res = drop( [1,1], take( [99,99], A));

⇓ Function inlining

tmp = with ([0,0] <= iv < [99,99])
genarray( [99,99], A[iv]);

res = with ([0,0] <= iv < [98,98])
genarray( [98,98], tmp[iv+[1,1]]);

⇓ with-loop-folding

res = with ([0,0] <= iv < [98,98])
genarray( [98,98], A[iv+[1,1]]);

Fig. 2. With-loop-folding example.
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As a consequence, the entire operation can still be represented by a single gener-
ator. However, generators of subsequent with-loops may also define disjoint or
overlapping sets of index vectors. In these cases, different elements of the target
array must be computed according to different specifications, a property which
is not supported by with-loops.

WithLoopExpr′ ⇒ with [ Part ]+ Operation

Part ⇒ Generator [ AssignBlock ] : Expr

Fig. 3. Pseudo syntax of multi-generator with-loops.

To address this problem and to create a representation that is closed under
with-loop-folding, user-level with-loops are internally embedded into a more
general representation called multi-generator with-loop [15]. Its pseudo syntax
is defined in Fig. 3. The main difference between internal multi-generator with-
loops and user-level with-loops is that the former consist of an entire sequence
of parts. Each part is made up by an individual generator, an associated goal
expression, and an optional block of local declarations. Being an internal format
only allows to guarantee certain regularity properties, e.g., the index variables
in the various generators are all the same, and the set of generators forms a
partition of the target array’s index space, i.e., each element of the target array
is covered by exactly one generator.

The importance of multi-generator with-loops lies in the fact that all array
operations in SaC are internally represented in this format. Hence, any optimiza-
tion technique on array operations must be defined based on this representation.
For additional information on multi-generator with-loops see [15] or [26].

4 With-Loop Scalarization – The Base Case

A convenient way of describing complex array operations is to map the basic
operations defined in the SaC standard library to arrays of higher rank by
means of with-loops. Since the library operations are themselves implemented
by with-loops, this layered approach to software design results in nested with-
loops in intermediate code, an example of which is shown in Fig. 4.

A = with ([0] <= iv < [4]) {
B = with ([0] <= jv < [4])

genarray( [4], iv[0] + 2 * jv[0]);
}
genarray( [4], B);

A =




0 2 4 6
1 3 5 7
2 4 6 8
3 5 7 9




Fig. 4. Array A is defined by two nested with-loops.

Unfortunately näıve compilation does not translate nested with-loops into
efficient programs. Like in the case of consecutive array operations addressed by
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with-loop-folding creation of temporary arrays forms the main obstacle for
achieving competitive runtime performance. Even worse, the number of interme-
diate arrays is not proportionate to the number of consecutive operations, but
to the size of the index range defined by the outer generator.

with-loop-scalarization is a high-level program transformation that ap-
proaches this problem by merging nested with-loops into single ones. For ex-
ample, application of with-loop-scalarization to the with-loops in Fig. 4
would replace the nesting with the equivalent with-loop shown in Fig. 5.

A = with ([0,0] <= iv < [4,4])
genarray( [4,4], iv[0] + 2 * iv[1]); A =




0 2 4 6
1 3 5 7
2 4 6 8
3 5 7 9




Fig. 5. Array A is generated by a single scalar with-loop.

The code transformation applied can be generalized to the compilation
scheme shown in Fig. 6. For illustrative purposes we define with-loop-scalar-
ization on ordinary with-loops first and extend this scheme to multi-generator
with-loops later in this section. With-loop-scalarization replaces two
nested with-loops with a single one, which is defined as follows:

– The new generator’s boundary, step, and width vectors result from the con-
catenation (denoted by ++) of the original outer with-loop’s vectors with
the corresponding vectors of the inner with-loop.

– The shape vector is also defined by the concatenation of the two original
shape vectors.

– The body equals that of the inner with-loop prepended with a reconstruc-
tion of the two former index vectors. To maintain dimension invariance, these
are defined by take and drop operations performed on the new index vector.

SWLS







with ( lb1 <= iv1 < ub1 step s1 width w1) {
valouter = with ( lb2 <= iv2 < ub2 step s2 width w2)

{
valinner = expr( iv1, iv2);

} genarray( shapeinner, valinner);
} genarray( shapeouter, valouter)







=




with ( lb1++lb2 <= iv < ub1++ub2 step s1++s2 width w1++w2) {
iv1 = take( shape( lb1), iv );

iv2 = drop( shape( lb1), iv );

valinner = expr( iv1, iv2);

} genarray( shapeouter++shapeinner, valinner)

if iv1 �∈ FV (lb2) ∧ iv1 �∈ FV (ub2) ∧ iv1 �∈ FV (s2) ∧ iv1 �∈ FV (w2)

Fig. 6. A simplified compilation scheme for with-loop-scalarization.
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– The result expression of the new with-loop is the same as that of the original
inner with-loop.

This scheme can be applied to most of the cases in which the elements of
an outer with-loop are defined by an inner with-loop. However, with-loop-
scalarization cannot be applied if lb2, ub2, s2, or w2 depend on iv1, since no
reference must be lifted outside the binding scope of the variable it refers to.

As pointed out in Section 3, user-level with-loops are internally embedded
into multi-generator with-loops. Hence, the compilation scheme illustrates the
working principle of with-loop-scalarization, but further generalization is
required to adapt it to multi-generator with-loops. To reuse elements of the sim-
plified compilation scheme, multi-generator with-loop-scalarization is split
into two consecutive phases. The first phase, called distribution phase, deals with
multiple generators occurring in inner with-loops. It distributes the generator
of the surrounding part over all inner parts. This is done by creating an outer
part for each of the inner parts, as depicted in Fig. 7. Step and width vectors are
omitted for reasons of simplicity. They are treated in the same way as boundary
vectors.

The internal representation of multi-generator with-loops as a result of the
distribution phase is characterized by overlapping generators. However, this de-
ficiency is addressed by the subsequent scalarization phase, which completes
with-loop-scalarization. Basically, this is achieved by mapping the simpli-
fied compilation scheme from Fig. 6 to all parts of the outer with-loop, as shown
in Fig. 8. Finally, the composition of both compilation phases yields a scheme
for multi-generator with-loop-scalarization:

WLS = DIST ◦ SCAL .
It remains to be pointed out that the same restrictions apply for multi-

generator with-loop-scalarization as mentioned for the simplified case. If
some inner generator depends on the index vector of an outer generator, the
compound operation cannot be expressed by a single multi-generator with-loop
and, hence, there is no opportunity for with-loop-scalarization.

5 With-Loop Scalarization – Enhancing Applicability

Unfortunately, with-loop-scalarization as defined in the previous section
is insufficient to handle all cases of nested array operations. The compilation
scheme for multi-generator with-loops requires each part of an outer with-loop
to contain exactly one nested with-loop. However, in many cases intermediate
code which would benefit from with-loop-scalarization does not comply to
this restricted format, e.g., an inner with-loop may be accompanied by addi-
tional code or the inner non-scalar expression may not be given as a with-loop
at all.

This section is about making with-loop-scalarization applicable in a
broader range of optimization cases. Three auxiliary transformation schemes are
presented which tackle a specific code pattern each and result in nested with-
loops, thus enabling with-loop-scalarization.
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DIST







with
...

( lbl <= iv1 < ubl) {
vall = with ( lbl,1 <= iv2 < ubl,1) {

vall,1 = exprl,1( iv1, iv2);

} : vall,1
...

( lbl,k <= iv2 < ubl,k) {
vall,k = exprl,k( iv1, iv2);

} : vall,k
genarray( shapeinner);

} : vall
...

genarray( shapeouter )







=




with
...

( lbl <= iv1 < ubl) {
vall = with ( lbl,1 <= iv2 < ubl,1) {

vall,1 = exprl,1( iv1, iv2);

} : vall,1
genarray( shapeinner);

} : vall
...

( lbl <= iv1 < ubl) {
vall = with ( lbl,k <= iv2 < ubl,k) {

vall,k = exprl,k( iv1, iv2);

} : vall,k
genarray( shapeinner);

} : vall
...

genarray( shapeouter )

if iv1 �∈ FV (lbi,j) ∧ iv1 �∈ FV (ubi,j)

Fig. 7. The distribution phase of multi-generator with-loop-scalarization.

5.1 Vectors

The first auxiliary transformation deals with the case of the non-scalar element
of a with-loop being given in vector notation. As can be seen in Fig. 9, it suffices
to replace the reference to the vector with a with-loop that contains one part
for each of the vector’s elements. Hence, each generator describes an index space
containing exactly one element. The resulting with-loop nesting can then be
scalarized using multi-generator with-loop-scalarization.
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SCAL







with
...

( lbl <= iv1 < ubl) {
vall = with ( lbl,1 <= iv2 < ubl,1) {

vall,1 = exprl,1( iv1, iv2);

} : vall,1
genarray( shapeinner);

} : vall
...

( lbl <= iv1 < ubl) {
vall = with ( lbl,k <= iv2 < ubl,k) {

vall,k = exprl,k( iv1, iv2);

} : vall,k
genarray( shapeinner);

} : vall
...

genarray( shapeouter )







=




with
...

( lbl++lbl,1 <= iv < ubl++ubl,1) {
iv1 = take( shape( lbl), iv );

iv2 = drop( shape( lbl), iv );

vall,1 = exprl,1( iv1, iv2);

} : vall,1
...

( lbl++lbl,k <= iv < ubl++ubl,k) {
iv1 = take( shape( lbl), iv );

iv2 = drop( shape( lbl), iv );

vall,k = exprl,k( iv1, iv2);

} : vall,k
...

genarray( shapeouter++shapeinner )

Fig. 8. The scalarization phase of the multi-generator with-loop-scalarization.

5.2 Arbitrary Arrays

In general, non-scalar elements of a with-loop may not only be given by nested
with-loops or by vectors, but may also result from with-loops defined outside
of the with-loop or even from function applications. In these cases the arrays’
contents are hidden from the view of any local optimization strategy.

As illustrated in Fig. 10, with-loop-scalarization can handle this prob-
lem by inserting an identity with-loop whose index space covers the entire array,
and its operation is just a selection. Hence, the identity with-loop replaces a
reference to an array with a definition of it and thereby enables with-loop-
scalarization.
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VEC







A = with
...

( lbl <= iv1 < ubl) {
v = [v1, ..., vn];

} : v
...

genarray( shp );







=




A = with
...

( lbl <= iv1 < ubl) {
vall = with ( [0] <= iv2 < [1]) : v1

...

( [n − 1] <= iv2 < [n]) : vn
genarray( [n] );

} : vall
...

genarray( shp );

Fig. 9. Auxiliary transformation scheme for arrays given in vector notation.

5.3 Imperfect Nestings

All optimization strategies presented so far can only be applied if with-loops
form perfect nestings, i.e., there must be no code before inner with-loops. To
handle imperfect nestings as well, With-loop-scalarization is accompanied
by the auxiliary transformation scheme shown in Fig. 11. The scheme pushes

ID







A = someArray;
B = with

...

( lbl <= iv1 < ubl) : A
...

genarray( shp );







=




A = someArray;
B = with

...

( lbl <= iv1 < ubl) {
vall = with (0∗shape(A) <=iv2< shape(A)) : A[iv2]

genarray( shape(A) );
} : vall
...

genarray( shp );

Fig. 10. Inserting an identity with-loop enables with-loop-scalarization.
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PD







with
...

( lbl <= iv1 < ubl) {
var = exprl( iv1);

vall = with
...

( lbl,k <= iv2 < ubl,k) {
vall,k = exprl,k( iv1, iv2, var);

} : vall,1
...

genarray( shpinner );
} : vall
...

genarray( shpouter )







=




with
...

( lbl <= iv1 < ubl) {
vall = with

...

( lbl,k <= iv2 < ubl,k) {
var = exprl( iv1);

vall,k = exprl,k( iv1, iv2, var);
} : vall,k
...

genarray( shpinner );
} : vall
...

genarray( shpouter )

Fig. 11. Auxiliary transformation scheme for imperfect with-loop nestings.

down assignments into the inner with-loop and this way creates perfect nest-
ings. While this transformation enables with-loop-scalarization, a serious
drawback is that the moved expressions may be evaluated repeatedly. However,
in many situations the performance increase achieved by with-loop-scalar-
ization outweighs the cost of redundant code execution. Still, this transforma-
tion has speculative character and should be used carefully.

6 Performance Evaluation

This section reports on some experiments evaluating the performance impact
of with-loop-scalarization. All reported tests have been made on a SUN
Ultra 1 workstation using SUN Workshop 5.0 compilers for code generation.
Additional experiments on an Intel Pentium III based PC running Linux and
gcc 3.2 confirmed the figures.
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6.1 A Customized Benchmark

Fig. 12 shows a SaC micro benchmark tailor-made for estimating the perfor-
mance impact of with-loop-scalarization. It defines a matrix in a row-wise
manner, i.e. by creating one intermediate vector per matrix row. The constants
SIZE and INNER allow for specific investigations on the impact of the intermedi-
ate vector’s size while retaining the overall problem size.

A = with ([0] <= iv < [SIZE/INNER])
{

B = with ([0] <= jv < [INNER])
genarray( [INNER], iv[0] + 2 * jv[0]);

}
genarray( [SIZE/INNER], B);

Fig. 12. Computational kernel of simple with-loop-scalarization test.

Fig. 13 shows program runtimes for systematic variations of the intermedi-
ate vector’s size. Prior to with-loop-scalarization this manipulation has an
enormous impact on overall performance due to memory management costs, loop
overhead, and various cache effects. With-loop-scalarization not only accel-
erates program execution by between 33% and a factor of 5, it also eliminates
any dependence between result matrix shape and runtime performance.
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Fig. 13. Performance evaluation of simple with-loop-scalarization test.

6.2 Arithmetic on Complex Numbers

Arithmetic on arrays of complex numbers is a particularly prominent example of
nested array operations and, hence, a good motivation for with-loop-scalar-
ization. Fig. 14 shows an excerpt from the SaC standard library, which de-
fines complex numbers as 2-element vectors and provides overloaded versions
of the usual arithmetic operators. In a second step, these overloaded operators
a mapped to arrays of any rank and shape. Dots as boundary expressions in



130 Clemens Grelck, Sven-Bodo Scholz, and Kai Trojahner

typedef double[2] complex;

complex (+) (complex a, complex b)
{
return( [ a[0] + b[0], a[1] + b[1]]);

}

complex[+] (+) (complex[+] a, complex[+] b)
{
res = with (. <= iv <= .)

genarray( shape(a), a[iv] + b[iv]);

return( res);
}

Fig. 14. Complex numbers in SaC.

with-loop generators are syntactic sugar referring to the least and the greatest
legal index vector of the array to be created. The impact of with-loop-scalar-
ization on the runtime performance achieved by this 2-level implementation is
shown in Fig. 15; program execution times are given for 100 additions/multipli-
cations of matrices of 1000 by 1000 complex numbers.

With-loop-scalarization reduces runtimes by 60% and by 50% for addi-
tion and for multiplication, respectively. To provide readers with an impression
of absolute performance values achieved by SaC, Fig. 15 also presents corre-
sponding runtimes of equivalent Fortran-90 and C programs. Whereas the
Fortran-90 code benefits from built-in support for complex numbers including
built-in arithmetic operators on arrays of complex numbers, straightforward C
implementations do not achieve the same performance levels. In the case of mul-
tiplication SaC even outperforms C. Due to the functional semantics of SaC
the compiler manages to identify multiple references to identical array elements
when computing each complex product. Whereas the SaC compiler avoids these
superfluous memory accesses, a C compiler must make conservative assumptions,
which result in lower performance or require hand optimization.
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6.3 NAS Benchmark FT

To evaluate the performance impact of with-loop-scalarization on a larger
application we have chosen the NAS benchmark FT [3]. It implements a solver
for a class of partial differential equations by means of repeated 3-dimensional
forward and inverse complex fast-Fourier transforms. This benchmark has pre-
viously been used for evaluating the suitability of functional languages for nu-
merical computing [18]. A high-level SaC implementation is described in [17].

Fig. 15 shows that with-loop-scalarization reduces the total benchmark
execution time by as much as one third. Comparing SaC runtimes with highly
hand-optimized Fortran-77 and C implementations of the benchmark makes
clear that with-loop-scalarization reduces the performance penalty of high-
level programming from a factor of 4 down to less than a factor of 2.4, numbers
which are significantly better than those reported in [18].

7 Related Work

In functional languages separate parts of a program are typically glued together
using intermediate data structures. Their detection and elimination is crucial
for achieving good runtime performance. Optimizations to this effect are gener-
ally referred to as deforestation or fusion techniques [29, 13, 11, 12, 27]. Although
being similar in spirit, they completely differ from with-loop-scalarization
in the concrete setting. Whereas they are based on linked lists, with-loop-
scalarization acts on multidimensional arrays. Moreover, deforestation con-
nects one producer to one consumer, whereas with-loop-scalarization com-
bines the creation of a single array with the creation of many subarrays, one for
each element position.

Since main-stream functional programming is based on algebraic data types,
research on functional arrays has mostly been focused on achieving reasonable
efficiency under less than optimal side conditions discussing such issues as strict-
ness, unboxing, or the aggregate update problem [2, 28, 9]. A variant of deforesta-
tion for arrays is described in [8]; it is similar in spirit to with-loop-folding
[24] adapted to the context of Haskell arrays.

A notable exception from the main-stream of functional programming that
puts the emphasis on arrays rather than on lists is Sisal [22]. However, with
a vector-of-vectors representation of multidimensional arrays, Sisal avoids the
need for an optimization like with-loop-scalarization, but pays with ineffi-
cient array accesses in general [23, 25].

An optimization bearing some resemblance to with-loop-scalarization
is the flattening transformation [6] developed in the context of Nesl [5]. In
contrast to SaC, arrays in Nesl are irregular, e.g., each row of a matrix may
have a different size. This format is particularly amenable to the representation
of irregular problems or sparse data structures, but incurs substantial overhead
in the case of regular arrays. The flattening operation aims at transforming a
multidimensional irregular array into a flat data vector and an auxiliary vector
encapsulating all structural information.
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In imperative array languages, e.g. Fortran-90 or Zpl [10], optimizations
like with-loop-scalarization have not been pursued because in their context
operational aspects are decoupled from data layout aspects. Memory represen-
tations of arrays are defined through explicit declaration, not by the operations
that incrementally initialize their elements. In contrast, high-level array process-
ing, as in the case of SaC, combines memory layout definition and monolithic
initialization in a single conceptual step. As memory layout generally follows
the initializing operation, optimizations like with-loop-scalarization must
ensure that stepwise initializations do not incur costly intermediate data layouts.

8 Conclusion and Future Work

Creation of large numbers of temporary arrays at runtime and, hence, a mediocre
runtime performance is the price which typically must be paid for a high-level
coding style. To make this way of programming reasonable in areas where perfor-
mance matters requires powerful optimization schemes that eliminate temporary
arrays by meaning-preserving code transformations. This paper discusses with-
loop-scalarization, a new optimization technique based on with-loops. It
focuses on intermediate arrays arising from nested array operations. Several ex-
periments show that with-loop-scalarization may have a tremendous im-
pact on the runtime performance of compiled code. It turns out to be one key
technique to achieve levels of performance competitive to Fortran.

With-loop-scalarization requires intermediate code to follow a quite spe-
cific pattern. To improve its applicability in practice it is accompanied by aux-
iliary transformation schemes which rewrite intermediate code accordingly. One
of these transformations intentionally moves code into the body of a nested
with-loop. This runs counter traditional optimization strategies, which aim at
removing loop-invariant code, and may lead to repeated evaluation of expres-
sions. Experience shows that in many cases other optimizations effectively solve
this problem and eliminate repeated evaluations by means beyond the scope of
this paper. Nevertheless, future work is needed to gain any guarantees to this
effect. Our current approach is to wait until the final code generation phase when
multidimensional with-loops are eventually transformed into complex nestings
of for-loops. As soon as binding levels for individual loop variables are once
again discriminated, an additional backend loop invariant removal phase would
solve the problem.
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