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ABSTRACT

In this paper the challenge of parallelization development of industrial high performance inspection systems is

addressed concerning a conventional parallelization approach versus an auto-parallelized technique. Therefore,

we introduce the functional array processing language Single Assignment C (SaC), which relies on a hardware

virtualization concept for automated, parallel machine code generation for multicore CPUs and GPUs. Addi-

tional, software engineering aspects like programmability, productivity, understandability, maintainability and

resulting achieved gain in performance are discussed from the point of view of a developer. With several illustra-

tive benchmarking examples from the field of image processing and machine learning, the relationship between

runtime performance and efficiency of development is analyzed.
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1. INTRODUCTION

The landscape of parallel computing has substantially changed in the last years. It is not only obvious that “the

future is parallel” but also current trends confirm that computing power through parallelism will be provided by

many-core architectures.1 General-purpose many-core architectures must conveniently support a wide range of

programming styles and languages. If architectures prefer a particular model of parallel programming, they are

not likely to become widely accepted, especially if such architectures require programming skills that probably

overstrain the average programmer. Furthermore, the development of high performance applications on novel

and ever-changing hardware environments like multi- and many-core systems, Graphics Processing Units (GPUs)

or Field Programmable Gate Arrays (FPGAs) is cost- and time-intensive. Writing explicitly parallel code for

each and any of these architectures for each and any relevant part of a software system in theory would yield the

best possible performance, but is highly uneconomical.

What is needed is a convenient abstract language that supports automatic parallelization on different ar-

chitectures without changing source code and robust performance benefits. Since the early days of computing

programmers are used to work with high-level programming languages (e.g., Algol, APL, Pascal, Fortran, Lisp,

C) to hide low-level details of the architecture. Software engineers neither should need to design and develop in

unintuitive ways nor to deal with a variety of hardware and language details just to avoid design mistakes or

bottlenecks or just to achieve an attractive speed-up. From the economical point of view, an approach that yields

the desired performance with minimal effort will be preferred, particularly for real-time performance applications

in industry as well as for less efficient hardware.

Such a high-level programming language is Single Assignment C (SaC) — a strict, purely functional pro-

gramming language, offering the combination of high-level language constructs with the high performance of

manually optimized low-level modules. SaC combines C/Matlab-style syntax; it is designed to support high-level

multi-dimensional stateless array processing. The SaC compiler generates competitive code for homogeneous

multi-core/multi-processor systems,2 for many-core NVidia graphics accelerators3 and for the MicroGrid chip

multiprocessor architecture.4

In the field of quality inspection of textured surfaces, e.g., metal, foils, woven fabrics, we have to cope with high

scanning speeds, a large amount of data to process, and a complex phenomenology of textures and defects. This

requires the application of advanced cost-intensive algorithms of image processing as well as machine learning,
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the use of high-performance computational hardware like GPUs or multi-core systems and the exploitation of

parallelization potentials. The analysis of the whole processing pipeline (image acquisition, preprocessing, feature

extraction, registration, defect detection and classification) with standard languages regarding performance is a

resource- and time-intensive challenge. Figure 1 gives an example of such a image processing pipeline.

Figure 1. Typical image processing pipeline

While the performance of the image acquisition part mainly depends on the selected hardware and commu-

nication interfaces, the performance of major parts of preprocessing and feature extraction can be computed

in a well-predictable way, due to the fixed size of filter operations and the amount of data known in advance.

Besides less computational intensive methods, e.g., thresholding, image arithmetic, etc., the application of more

sophisticated preprocessing methods is indispensable, e.g., enhancement of faults with the anisotropic diffusion

filter, however, it increases the execution time. Nevertheless, sophisticated preprocessing methods can reduce

the complexity and hence the computational costs of high-level pattern recognition and classification methods.

For example, at the beginning of the processing pipe, a typical low-level scenario uses local filter operations,

acting, e.g., on 9x9 matrices, while afterwards global operations on the whole image data are applied, such as

a registration with a reference model based on thousands of feature points. So far the processing steps are

acting on a physical, appearance-based level which only depends on the image intensity values. Finally, defect

candidates have to be identified, located and classified. This final high-level step heavily depends on parameters

that are not coded within the image, e.g., the customer’s judgment whether some product quality aspects can

be accepted or have to be rejected. The complexity of the classification step correlates with the quality of the
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preprocessing on the one hand, i.e., the best possible enhancement of faults and elimination of noise, and with

the complexity of the defect taxonomy on the other hand.

In this paper a comparison and benchmarking of different implementations of two major parts of the above

introduced image processing pipeline is performed. One part is the investigation of the Perona-Malik Anisotropic

Diffusion1) which has poor performance characteristics by default, and the other examined method is a classifi-

cation by Support Vector Machines (SVMs).5 After a short overview of related work in Section 2, we introduce

the functional array language SaC (Section 3). Then a detailed explanation of the anisotropic diffusion and

the the SVM (and the according parallelized versions) is given in Section 4. Afterwards, we compare the SaC

optimization strategies (with and/or without GPU support) against those of the opencv2.36 in Section 5. Fi-

nally, in Section 6 a comparison of the different implementations concerning programmability, understandability,

productivity, maintainability is given.

2. RELATED WORK

The industry standard for programming NVidia GPUs is CUDA.7 CUDA is a vendor-specific, architecture-specific

and, hence, very low-level API. It allows the experienced programmer to adapt a program to the architectural

peculiarities of GPU processing and to achieve high performance, if programming effort is not a big concern.

However, software engineering on this level of abstraction is both tedious and cumbersome. If CUDA marks

one end of the spectrum of GPU programming, then SaC8 marks the other. SaC programs are architecture-

agnostic – it is solely up to the compiler and runtime system to make efficient use of GPUs where and when they

are present.3 Our goal is to provide scientists whose areas of expertise lie elsewhere than in high-performance

computing, with nearly the same program performance as if they had been written by a highly skilled computer

programmer. Analysis of that trade-off between performance and productivity is the subject of this paper.

In between CUDA and SaC, a number of other approaches aim at facilitating GPU programming. OpenCL,9

originally proposed by Apple, is now promoted by AMD (the only major manufacturer of both multi-core CPUs

and GPUs); in particular, AMDs upcoming Fusion architecture will soon combine both worlds on a single chip.

OpenCL is only marginally more abstract than CUDA. Programmers defines computational kernels, which can

be executed on different kinds of GPUs and even on multi-core CPUs. Instead of providing access to concrete

architectural features, OpenCL abstracts them into a machine model that captures essential properties of today’s

GPU-enhanced computing systems across individual manufacturers and models. Nonetheless, to obtain high

performance, OpenCL programmers must concern themselves with a variety of machine-level details that lower

their productivity.
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OpenMP10 has a track record of facilitating programming of symmetric shared memory systems (multi-core,

multi-processor) through compiler directives. The OpenMPC11 project aims at generating CUDA code from

eligible standard OpenMP directives. This approach is particularly attractive if application code is already

equipped with OpenMP directives. Still, OpenMP is on a much lower abstraction level than SaC. We want to

mention a recent proposal to extend OpenMP by clauses for the explicit placement of computations on the host

or an a GPGPU.12

Last, but not least, HiCuda13 is another approach to programming NVidia GPUs. based on compiler direc-

tives; it essentially imitates the OpenMP approach for symmetric multicores and proposes a tailor-made directive

language for CUDA-enabled GPUs. Technically, HiCuda does simplify GPU programming, but it nonetheless

exposes the same variety of architectural features as CUDA. Programmers need to make all relevant design

decisions in application engineering, but can express them much more concisely than when using vanilla CUDA.

3. SINGLE ASSIGNMENT C

SaC is a purely functional programming language that, as far as possible, adopts a C-like notation to ease

transition of programmers with a background in imperative languages; the language core is a functional, side-

effect-free, subset of ISO C; assignment sequences are treated as nested let-expressions, branches as conditional

expressions and loops as tail-end recursive functions; details can be found in.8 Despite the radically different

underlying execution model (context-free substitution of expressions vs. step-wise manipulation of global state),

all language constructs adopted from C exhibit exactly the operational behaviour expected by C programmers.

This equivalence allows programmers to choose their favourite style of SaC code; meanwhile, the compiler exploits

the benefits of SaCś side-effect free semantics to provide advanced optimisations and automatic parallelisation.

On top of this language kernel SaC provides genuine support for processing truly multidimensional (see

Figure 2) and truly stateless/functional arrays using a shape-generic style of programming. Any SaC expression

evaluates to an array. Arrays may be passed between functions without restrictions. Array types include arrays

of fixed shape, e.g. int[3,7], arrays of fixed rank, e.g. int[.,.], and arrays of any rank, e.g. int[*]. The

latter include scalars, which we, following APL, consider to be rank-0 arrays with an empty shape vector. For

convenience and equivalence with C, we use int, rather than the equivalent int[], as a type notation for scalars.

The hierarchy of array types induces a subtype relationship, and SaC supports function overloading with respect

to subtyping.

SaC provides only a small set of built-in array operations. Essentially, there are primitives to retrieve data

pertaining to the structure and contents of arrays, e.g. an array’s rank (dim(array)) or its shape (shape(array)).
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dim: 1

shape: [ 6 ]

data: [1,2,3,4,5,6]
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data: [42]

Figure 2. Truly multidimensional arrays in SaC and their representation by data vector, shape vector and rank scalar

...

... ... ......int int[1] int[42]

int[.]

int[  ]

int[.,.]

int[1,1] int[3,7]

rank: dynamic

AUD Class:

shape: static

shape: dynamic

AKD Class:

rank: static

shape: dynamic

AKS Class:

rank: static

*

Figure 3. Three-level hierarchy of array types: arrays of unknown dimensionality (AUD), arrays of known dimensionality

(AKD) and arrays of known shape (AKS)

A selection facility provides access to individual elements or entire subarrays using a familiar square bracket

notation: array[idxvec].

All aggregate array operations are specified using with-loop expressions, a SaC-specific array comprehension:

with {

( lower_bound <= idxvec < upper_bound) : expr;

}: genarray( shape, default)

Here, lower_bound and upper_bound denote expressions that must evaluate to integer vectors of equal length.
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They define a rectangular index set of arbitrary dimension. The identifier idxvec represents elements of this set,

similar to loop variables in for-loops. However, we deliberately do not define any order on these index sets.

Hence, a with-loop essentially specifies a FORALL loop nest. We call the specification of such an index set a

generator and associate it with some potentially complex SaC expression. Thus, we create a mapping between

index vectors and values, in other words an array. As an example, consider the with-loop

1 with {

2 ( [ 0 , 0 ] <= i v < [ 3 , 5 ] ) : 42 ;

3 } : gena r ray ( [ 3 , 5 ] , 0)

that defines a 3 × 5 matrix with all elements set to 42. The scope of the index vector, idxvec (here named iv)

is confined to the expression associated with the generator. The index vector can be used to access the current

index location. For example, the with-loop

1 with {

2 ( [ 0 ] <= i v < [ 5 ] ) : i v [ 0 ] ;

3 } : gena r ray ( [ 5 ] , 0)

computes the vector [0,1,2,3,4]. Note that iv denotes a 1-element vector rather than a scalar. Therefore, we

need to select the first (and only) element from iv to achieve the desired result. Actually, it is not the generator

that defines the shape of the resulting array, but the first expression following the keyword genarray. So far,

the two have always coincided, but for example

1 with {

2 ( [ 1 ] <= i v < [ 4 ] ) : 42 ;

3 } : gena r ray ( [ 5 ] , 0)

computes the vector [0,42,42,42,0]. SaC still creates a 5-element vector, but only the three inner elements

are defined as 42; all others are set to the default value, which is given by the second expression following the

key word genarray, in this case 0. Since the default expression is not within the scope of a generator, it has no

access to the index. Hence, all array elements not covered by any generator are guaranteed to have the same

value.

With-loops are not limited to a single generator. For example, the with-loop

1 with {
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2 ( [ 1 ] <= i v < [ 4 ] ) : 1 ;

3 ( [ 3 ] <= i v < [ 5 ] ) : 2 ;

4 } : gena r ray ( [ 6 ] , 0)

defines the vector [0,1,1,2,2,0]. All elements of the resulting array still not covered by any of the generators

are initialised with the value of the default expression, 0 in the example. Whenever the index sets defined by the

various generators are not pairwise disjoint, the order of the generators matters: in the example the array’s value

at index location [3], which is covered by both generators is set to 2 rather than to 1, i.e., the last generator

dominates.

SaC actually features several variants of with-loops. Let us assume we have named the array defined by the

previous with-loop A. Then, the modarray-with-loop

1 with {

2 ( [ 0 ] <= i v < [ 3 ] ) : 3 ;

3 } : modarray ( A)

computes the vector [3,3,3,2,2,0]. More precisely, it computes a new array that has the same shape as the

existing array denoted by the expression following the key word modarray. The computation of those elements

covered by one or more generators follows exactly the same pattern as in the case of genarray-with-loops, but

the remaining elements are defined by the values of the corresponding elements in the referenced array rather

than by a common default value. Further with-loop variants support the definition of reduction operations and

strided index sets.

As a more complete example, consider the 2-dimensional, 5-point stencil relaxation shown in Figure 4. Here,

a C-style FOR-loop implements iterative Jacobi-relaxation, while a SaC with-loop array comprehension defines

a single relaxation step. The five nearest neighbour elements of the argument array a are selected using explicit

index computations. The dots in the generator refer to the least and the greatest index vector of the argument

array a, respectively. In conjunction with the less-than relational operator, the dots form a convenient way to

define the set of all non-boundary indices of array a.

While with-loops can always be used to define application-specific array operations like the 5-point stencil

relaxation in Figure 4, their primary purpose is to support the definition of rank- and shape-generic basic array

processing building blocks, which we denote as the principle of abstraction. Those blocks, are then used to

compose application-specific functions, following the principle of composition common in array and functional
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1 doub le [ . , . ] r e l a x ( doub le [ . , . ] a , i n t i t e r )

2 {

3 f o r ( i =0; i<i t e r ; i++) {

4 a = with {

5 ( . < i v < . ) : 0 . 2 ∗ ( a [ i v ] + a [ i v − [ 1 , 0 ] ] + a [ i v − [ 0 , 1 ] ]

6 + a [ i v + [ 0 , 1 ] ] + a [ i v + [ 1 , 0 ] ] ) ;

7 } : modarray ( a ) ;

8 }

9 r e t u r n a ;

10 }

Figure 4. 2-dimensional 5-point stencil relaxation in SaC

1 doub le [ ∗ ] s t e p ( doub le [ ∗ ] a )

2 {

3 b = a ;

4 f o r ( d=0; d<dim ( a ) ; i++) {

5 b += r o t a t e ( d , −1 , a ) + r o t a t e ( d , 1 , a ) ;

6 }

7 r e t u r n b ∗ ( 1 . 0 / tod (2∗ dim ( a )+1)) ;

8 }

9

10 doub le [ ∗ ] r e l a x ( doub le [ ∗ ] a , i n t i t e r )

11 {

12 f o r ( i =0; i<i t e r ; i++) {

13 a = s t ep ( a ) ;

14 }

15 r e t u r n a ;

16 }

Figure 5. Rank-generic nearest-neighbour stencil relaxation in SaC
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langauges.

Figure 5 demonstrates how SaC code is engineered based on these principles. We first define a shape- and

rank-invariant version of nearest-neighbour relaxation that, as before, is based on a sequential FOR-loop to

implement a series of relaxation steps. The function step uses another FOR-loop over the rank (number of

dimensions) of the argument array. In each dimension, we rotate the argument array by one element towards

ascending indices and by one element towards descending indices and, eventually, add up all these arrays in an

element-wise manner. Finally, we divide all elements of the resulting array by the number of additions, i.e. twice

the rank of the argument array plus one (for the non-rotated argument array). The function tod implements

conversion from integer to floating point numbers. It is worthwhile to note that all functions used in the definition

of step (e.g. rotation and element-wise array arithmetic) are not built-in primitives of the SaC language, but

are defined in the SaC standard library, and are based on with-loops.

programming

environment

layer

compiler

technology

layer

layer

hardware

virtualisation

Symmetric

Processors
Multicore

Manycore
GPGPU

Boards

MicroGrid

Architecure

AmsterdamSequential

Processors

Unicore

Functional Array Programming

Advanced Compiler Technology

SAC

SAC2C

Figure 6. Architecture of SaC compilation infrastructure

As the various examples demonstrate, SaC code is completely architecture-agnostic. The SaC compilation

infrastructure sac2c exploits this fact to generate specific code for a variety of target hardware architectures

from the same SaC source code, thus achieving hardware virtualisation from a software engineering perspective.

Figure 6 illustrates this concept. Based on aggressively optimised sequential code14 sac2c at the time of writing

supports symmetric multicore multiprocessor systems 15 , the MicroGrid chip multiprocessor architecture4 and

NVidia GPGPUs.16 Work is on-going to extend this list.

4. APPLICATIONS

We now demonstrate how SaC combines high productivity in software engineering with high performance in

program execution, by means of two methods from the industrial inspection system introduced in Section 1.

First, we present a brief theoretical introduction to the anisotropic diffusion filter of Perona-Malik,1 and to the
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decision function of the single class support vector machine.17 Then, we show our surprisingly simple and concise

SaC implementations of these applications.

4.1 Perona-Malik Anisotropic Diffusion

Essential factors for robust and reliable defect detection are the enhancement of defects, such as scratches

or blowholes, and attenuation of environmental influences, e.g., irregular reflections, noise or dust. Defect

enhancement is supported by the Perona-Malik anisotropic diffusion filter,1 whose principal characteristic is to

reduce noise and concurrently enhance higher contrast regions.

The formal definition of the Perona-Malik anisotropic diffusion filter is defined by introducing D (., .) from

Equation (1) with the boundary condition in Equation (2), where D (., .) depends on the local derivative in

Equation (3) and Equation (4).

∂

∂t
ϕ = div(D∇ϕ), (1)

with boundary condition

ϕ(., .,0) = ϕ, (2)

where D depends on the local derivatives. Perona-Malik propose two different derivates

D = 1

1 + ( ∥∇ϕ∥
K
)
2

(3)

and

D = exp−(∥∇ϕ∥/K)
2

(4)

where Equation (3) acts as a smoothing filter that suppresses fine (noisy) structures, while Equation (4)

strengthens high contrast edges. For an illustration, see Figure 7 to Figure 9, where we can see that only the

connected wide regions are left, whereas noise structure is largely removed. The use of the deviation in Equa-

tion (4) in Figure 9 shows us that beside the big deep scratch in the middle also fine, noisy, high contrast edges

are left. Suppose that the parameters of the illustrated results in Figure 8 and Figure 9 are defined as follows:

NITER is the number of iterations, which means how many times the filter should applied to the image, delta
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Figure 7. stainless steel plate with

noise surface and scratch

Figure 8. Application of Equation (3)

on image of Figure 7; NITER=5;

lambda=1/3; kappa=10;

Figure 9. Application of Equation (4)

on image of Figure 7; NITER=5;

lambda=1/3; kappa=10;

defines the stepsize of iteration and kappa K is the gradient modulus that controls the sensitivity to the edges.

The data-independent characteristic of the anisotropic diffusion filter allows an objective performance analysis

of manually coded, as well as automatically SaC generated, GPU code. We present benchmarking results in

section 5; subsection 4.2 outlines the implementation details of Perona-Malik anisotropic diffusion in Single

Assignment C.

4.2 Implementation Single Assignment C versus Matlab

We show an abridgment of our SaC as well as Matlab implementation of the anisotropic diffusion filter. The

following comparison should give an impression of the similarity between SaC and Matlab syntax.
SaC

• . . .

• Line(3): apply the filter niter times

• . . .

• Line(6-9): apply stencil operation

• Line(12-15): calculate conduction

• Line(17-20): assemble image

• Line(23): return result

Matlab

• Line(3): assign image dimension

• Line(5): apply the filter niter times

• Line(8-9): zero padding around image

• Line(12-15): apply stencil operation

• Line(18-21): calculate conduction

• Line(23-27): assemble image

• Line(30): return result
Beside of the assign of the image dimension (Matlab - Line(3)) and the zero padding around the image for

stencil operation18 (Matlab - Line(8-9)) the differences of the code syntax are not significant.

Listing 1. SaC implementation of Perona-Malik Anisotropic filter
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1 f loat [ . , . ] executeAnisot rop icF i l t e rSAC ( f loat [ . , . ] image , f loat kappa , f loat de l ta , int n i t e r )

2 {

3 for ( i =0; i<n i t e r ; i++)

4 {

5 /∗ s t e n c i l operation ∗/

6 deltaNorth = s h i f t ( 0 , −1 , 0 f , image ) − image ;

7 de l taSouth = s h i f t ( 0 , 1 , 0 f , image ) − image ;

8 de l taEast = s h i f t ( 1 , −1 , 0 f , image ) − image ;

9 deltaWest = s h i f t ( 1 , 1 , 0 f , image ) − image ;

10

11 /∗ Conduction ∗/

12 condNorth = 1 f / (1 f + pow ( deltaNorth / kappa , 2 f ) ) ;

13 condSouth = 1 f / (1 f + pow ( deltaSouth / kappa , 2 f ) ) ;

14 condEast = 1 f / (1 f + pow ( de l taEast / kappa , 2 f ) ) ;

15 condWest = 1 f / (1 f + pow ( deltaWest / kappa , 2 f ) ) ;

16

17 image += de l t a ∗ ( condNorth ∗ deltaNorth

18 + condSouth ∗ de ltaSouth

19 + condEast ∗ de l taEast

20 + condWest ∗ deltaWest )

21 }

22

23 return image ;

24 }

Listing 2. Matlab implementation of Perona-Malik Anisotropic filter

1 func t i on image = executeAnisotropicFilterMATLAB ( image , n i t e r , kappa , de l ta , opt ion )

2 {

3 [ rows , c o l s ] = s i z e ( im ) ;

4

5 for i = 1 : n i t e r

6

7 % zero padding

8 d i f f l = ze ro s ( rows+2, c o l s +2);

9 d i f f l ( 2 : rows+1, 2 : c o l s +1) = image ;

10

11 % North , South , East and West d i f f e r ence s

12 deltaNorth = d i f f l ( 1 : rows , 2 : c o l s +1) − image ;

13 de ltaSouth = d i f f l ( 3 : rows+2, 2 : c o l s +1) − image ;

14 de l taEast = d i f f l ( 2 : rows+1, 3 : c o l s +2) − image ;

15 deltaWest = d i f f l ( 2 : rows+1, 1 : c o l s ) − image ;

16

17 % Conduction

18 condNorth = 1 ./ (1 + ( deltaN/kappa ) . ^ 2 ) ;

19 condSouth = 1 ./ (1 + ( de l taS /kappa ) . ^ 2 ) ;

20 condEast = 1 ./ (1 + ( deltaE/kappa ) . ^ 2 ) ;
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21 condWest = 1 . / (1 + ( deltaW/kappa ) . ^ 2 ) ;

22

23 image = image + de l t a ∗ ( condNorth . ∗ deltaNorth

24 + condSouth . ∗ de ltaSouth

25 + condEast . ∗ de l taEast

26 + condWest . ∗ deltaWest

27 ) ;

28 end

29

30 return image ;

4.3 Classification with One-Class Support Vector Machine

Support vector machines (SVM) are based on the concept of separating data of different classes by determining

the optimal separating hyperplanes.19 The main idea behind support vector machines - and their distinctness

to other learning algorithms - is the method of structural risk minimization. Instead of optimizing the training

error (which often leads to the problem of over-fitting), attention focuses on minimization of an estimate of

the test error .5 Due to that underlying generalization,SVMs have become widely used learning methods which

provide state-of-the art solutions for various application areas, e.g. text categorization, texture analysis, and

gene classification.

Typically, the SVM is a supervised learning algorithm working on two classes (binary classification, see also5).

But for industrial quality inspection, where mostly large amounts of good samples are available and just a small

fraction of possible defects are known, the application of an outlier-detection version has been proposed (one-class

or single-class SVM, see17 and20). The training of the one-class SVM (OC-SVM) relies only on one data class

(positive samples) and tries to construct a hyperplane that separates the surface region containing data from the

region containing no data. This is done by determining the hyperplane with maximal distance from the point of

origin with all (or almost all) data points lying on the opposite side of the origin. For an illustration see figure 10.

Figure 10. One-Class SVM: Separation of data points and origin

During training, a decision function f is determined, which is positive on all (or most) given positive samples
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and negative on the complement:

f(x) = sgn(∑
i

αik(xi,x) − ρ), (5)

where x is a new sample that needs to be classified. The kernel function k(., .) can be seen as similarity

measure between the new sample point and the support vectors xi (a sub-set of the good samples from training,

describing the outer sphere of the data cluster). The parameter ρ (decision boundary) and the non-zero weights

αi (of the corresponding support vector xi) are determined during the training phase.

For further details on the determination of the parameters and support vectors, and on possible kernel choices

(polynomial, Gaussian radial basis function, etc.) see5 and.21

For the following implementation in SaC and the benchmark tests (see Section 5), we use the Gaussian kernel

k(x,x′) = e−γ∣∣x−x
′
∣∣
2

,

with γ = 1
σ2 , where σ > 0 is the spread of the radial basis function, is used.

Often image processing applications are time-critical systems, e.g. in-line process control, where speed can

be a limiting factor for usability. So the most essential part is the speed-up of the classification step, therefore a

parallelization of the above mentioned decision function (see Equation 5) was considered.

4.4 Implementation in Single Assignment C

In this section, we implement the decision function of a single class support vector machine in SaC, see Listing 3.

In the Gaussian kernel function (kernel_rbf) the parameter x contains the candidates to be classified, and the

parameter sv contains the trained support vectors. The second function, (decision_oneclass_rbf computes the

classification for one data point, where alpha is the weight of the according support vector. The 3rd (overloaded)

function (predict_oneclass_rbf), maps the 2nd function onto the whole data set, as demanded by equation 5.

Both overloaded instances of the decision_oneclass_rbf function make use of SaC’s axis control notation.22

Abstracting from some complexities of with-loops, this notation maps an index variable (in both cases iv) to

an index space that is derived from the shape of an array into which the index variable indices within the right

hand side expression (e.g. data in the 2nd instance). That expression is evaluated for each legal index value and

the resulting values laminated to form a new array of the same shape as the one that is indexed into.

Listing 3. SaC implementation of the decision function of support vector machine

1 in l ine double kerne l_rbf (double [ . ] x , double [ . ] sv , double gamma)
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2 {

3 return exp ( −gamma ∗ sum( ( x−sv )∗ ( x−sv ) ) ) ;

4 }

5

6 in l ine double dec i s i on_onec la s s_rb f (double [ . ] data , double [ . , . ] svs , double [ . ] alpha ,

7 double rho , double gamma)

8 {

9 return sum({ iv −> alpha [ iv ] ∗ kerne l_rbf ( data , svs [ i v ] , gamma)}) > rho ? 1 .0 : 0 . 0 ;

10 }

11

12 double [ . ] p red ic t_onec las s_rbf (double [ . , . ] data , double [ . , . ] svs , double [ . ] alpha ,

13 double rho , double gamma)

14 {

15 return { iv −> dec i s i on_onec la s s_rb f ( data [ i v ] , svs , alpha , rho , gamma) } ;

16 }

5. BENCHMARKING

Runtime benchmarking depends heavily on which hardware specification is used; also, the selection of hard-

ware is problem specific. Hence, for our test scenario, we use two different hardware environments, i.e., a

DELL Precision™690 and a SONY VAIO™PCG-81112M laptop. The DELL Precision™690 has two separate

Intel®Xeon®5060 with 3.2GHz, giving 8 cores in total, and 2GB full buffered DDR2 memory, and a NVIDIA

GeForce 8800 Ultra graphic card. The SONY VAIO™PCG-81112M laptop has an Intel®Core™i7-740QM Pro-

cessor, 8GB RAM, and an NVIDIA GeForce GT 425M graphic card. The NVIDIA GeForce 8800 Ultra has 128

streaming processors with a core frequency of 612 MHZ, memory frequency of 1080MHz, 786MB memory and a

memory bandwidth of 103.7 GB/sec where the NVIDIA GeForce GTX 425M has 96 streaming processors with a

core frequency of 1120 MHZ, memory frequency of 800MHz, up to 1024 MB memory and a memory bandwidth

of 25.6 GB/sec.

5.1 Benchmarking Anisotropic Diffusion

The dimension of the input data for the anisotropic filter ranges from 256 × 256 pixels to 4096 × 4096 pixels,

with pseudo-randomly generated 8-bit values between 0 and 255 since, in this example, only the dimension of

the data affects execution time. Therefore, in Table 1 we present five different input sizes and propagate for

each of them Equation (3) ten times. Furthermore, we implemented the filter in SaC with auto generated CPU-

and CUDA-code; the CUDA version is manually optimized; the OpenCV2.3 framework is measured with and

without GPU and Intel TBB support. Finally, a Matlab implementation is benchmarked as well.

Table 1 gives the benchmarking results achieved on the DELL Precision™690; Table 2 gives the same for

the SONY VAIO™PCG-81112M. The first two rows compare CPU performance, where SAC-MT 1T denotes
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sequential execution and SAC-MT 8T denotes automatic parallelization to 8 cores. For all non-trivial problem

sizes, we observe a speedup of about 5. This reduction in runtime is realized with no more development effort, but

solely recompilation of the SaC source code. In industrial practice, this substantial performance improvement

can be a time buffer for using more complex algorithms or giving a significant competitive advantage against

other applications. Furthermore, the execution time of the auto-parallelized SaC-cuda code compares favorably

with manually optimized CUDA-code. It can be generally observed that GPU and TBB support of the OpenCV

implementation has, in this use case, no impact to the overall performance. In general, the runtime of the Matlab

implementation is not as bad as expected but, for larger input sizes (e.g., 4096x4096), it runs out of memory,

resulting in disastrous execution times.

image dimension

px256 × px256 px512 × px512 px1024 × px1024 px2048 × px2048 px4096 × px4096

SaC-mt 1T 0.199 sec 0.788 sec 3.165 sec 12.55 sec 50.18 sec

SaC-mt 8T 0.067 sec 0.156 sec 0.635 sec 2.562 sec 10.18 sec

SaC-cuda 0.003 sec 0.006 sec 0.015 sec 0.036 sec 0.181 sec

CUDA-manual 0.005 sec 0.007 sec 0.016 sec 0.050 sec 0.190 sec

OpenCV(1) 0.119 sec 0.540 sec 2.374 sec 9.571 sec 54.45 sec

OpenCV(2) 0.097 sec 0.550 sec 2.386 sec 9.507 sec 53.21 sec

OpenCV(3) 0.121 sec 0.512 sec 2.298 sec 9.532 sec 53.89 sec

OpenCV(4) 0.098 sec 0.498 sec 2.321 sec 9.532 sec 54.10 sec

Matlab 0.164 sec 0.608 sec 2.518 sec 10.06 sec 438.6 sec

Table 1. Runtime results of anisotropic filter benchmarked on a DELL Precision™690, SaC-mt 1T/8T = SaC on CPU

executed with 1 and 8 threads, SaC-cuda = SaC implementation, CUDA-manual = CUDA implementation, OpenCV(1)

= OpenCV2.3v without CUDA and TBB support, OpenCV(2) = OpenCV2.3v with CUDA support, OpenCV(3) =

OpenCV2.3v with TBB support, OpenCV(4) = OpenCV2.3v with CUDA and TBB support, Matlab = Matlab version

2011b.

But why do we not achieve a speedup of 8 with the CPU code? In fact, both experimental systems only feature

4 real cores which are twice hyperthreaded, but hyperthreading is not effective for this kind of workload. In this

sense, the four-fold speedup is close to optimal. The functional programming paradigm results in a low memory

usage of about 350 MB on average. However, if we need more performance for the application scenario, we have

the possibility either to re-implement the whole algorithm with NVIDIAs CUDA framework or automatically

generate executable GPU code with the SaC-cuda backend. A CUDA re-implementation definitely requires

higher development costs and programming know-how from experts, whereas SaC-cuda allows flexible time and

cost-efficient development.

In Table 2 are the benchmarking results achieved on the SONY VAIO™PCG-81112M, where the general

performance on CPU is slightly better than on DELL Precision™690. Although the SONY VAIO™PCG-81112M
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image dimension

px256 × px256 px512 × px512 px1024 × px1024 px2048 × px2048 px4096 × px4096

SaC-mt 1T 0.094 sec 0.334 sec 1.334 sec 5.388 sec 20.08 sec

SaC-mt 8T 0.085 sec 0.183 sec 0.692 sec 2.805 sec 11.06 sec

SaC-cuda 0.019 sec 0.046 sec 0.134 sec 0.456 sec 1.690 sec

CUDA-manual 0.039 sec 0.047 sec 0.077 sec 0.186 sec 0.624 sec

OpenCV(1) 0.047 sec 0.171 sec 0.763 sec 3.011 sec 12.15 sec

OpenCV(2) 0.041 sec 0.178 sec 0.787 sec 3.321 sec 12.53 sec

OpenCV(3) 0.045 sec 0.175 sec 0.752 sec 3.211 sec 12.21 sec

OpenCV(4) 0.035 sec 0.172 sec 0.770 sec 3.078 sec 12.42 sec

Matlab 0.103 sec 0.369 sec 1.315 sec 4.034 sec 15.657 sec

Table 2. Runtime results of anisotropic filter benchmarked on a SONY VAIO™PCG-81112M, SaC-mt 1T/8T = SaC

on CPU executed with 1 and 8 threads, SaC-cuda = SaC implementation, CUDA-manual = CUDA implementa-

tion, OpenCV(1) = OpenCV2.3v without CUDA and TBB support, OpenCV(2) = OpenCV2.3v with CUDA support,

OpenCV(3) = OpenCV2.3v with TBB support, OpenCV(4) = OpenCV2.3v with CUDA and TBB support, Matlab =

Matlab version 2011b.

has the newer graphic card, the benchmarks are significantly slower than on the DELL Precision™690, because

of the lower hardware performance characteristic in the laptop.

5.2 Benchmarking One-Class SVM

We now present a comparison of the parallelized versions of the decision function (see Equation (5)). First, the

SaC-cuda implementation, shown in Figure 3, is benchmarked. In addition to SaC runtime performance, we

present results of the GPUSVM 23 implementation and an OpenCV implementation compiled with GPU support,

as well as Intel TBB. The manually optimized implementation of the GPU-based OC-SVM Classifier is based

on a third-party C-Support Vector Classification implementation called GPUSVM .23 For processing SVM data

in parallel on GPU-devices, the applied classification algorithm employs Map Reduce24 techniques proposed by

Google as well as a GPU-vendor supplied Basic Linear Algebra Subroutines (CUBLAS). The developed GPU-

based OC-SVM classifier is able to read LIBSVM data format, hence, LIBSVM can be used for the training of

the SVM models (and providing support vectors for it). Furthermore, all implementations can handle sparse

matrices representation.

For the presented test results (shown in Table 3 and Table 4), some publicly available data sets were used

from the LIBSVM data sets repository.25 Since this data repository does not contain data sets for OC-SVMs, we

took binary sets and generated training data sets with a certain size (300 samples), consisting of data belonging

only to one class. A simplified training with the standard settings of LIBSVM was performed, using the Gaussian

RBF kernel with γ = 1/n (where n is the number of features of the input vectors) and ν = 0.5. For an explanation

of these parameters see .5
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data sets | # of data points | # of features

a1a | 30956 | 123 a9a | 32561 | 123 australian | 690 | 14 w8a | 49749 | 300

SaC-mt 1T 9.484 sec 10.16 sec 0.479 sec 15.72 sec

SaC-mt 8T 1.709 sec 1.885 sec 0.096 sec 2.850 sec

SaC-cuda 0.921 sec 0.951 sec 0.051 sec 1.356 sec

CUDA-manual 0.249 sec 0.253 sec 0.187 sec 0.295 sec

OpenCV(1) 6.241 sec 6.611 sec 0.055 sec 21.92 sec

OpenCV(2) 6.211 sec 6.598 sec 0.054 sec 21.76 sec

OpenCV(3) 1.410 sec 1.488 sec 0.017 sec 4.941 sec

OpenCV(4) 1.417 sec 1.494 sec 0.017 sec 4.939 sec

Table 3. Runtime results of decision function of single class support vector machine benchmarked on a DELL Precision™690,

SaC-mt 1T/8T = SaC on CPU executed with 1 and 8 threads, SaC-cuda = SaC implementation, CUDA-manual =

CUDA implementation, OpenCV(1) = OpenCV2.3v without CUDA and TBB support, OpenCV(2) = OpenCV2.3v with

CUDA support, OpenCV(3) = OpenCV2.3v with TBB support, OpenCV(4) = OpenCV2.3v with CUDA and TBB

support.

data sets | # of data points | # of features

a1a | 30956 | 123 a9a | 32561 | 123 australian | 690 | 14 w8a |49749 | 300

SaC-mt 1T 6.379 sec 6.834 sec 0.248 sec 9.620 sec

SaC-mt 8T 1.759 sec 1.865 sec 0.071 sec 3.097 sec

SaC-cuda 2.766 sec 2.949 sec 0.051 sec 3.882 sec

CUDA-manual 0.569 sec 0.613 sec 0.324 sec 0.794 sec

OpenCV(1) 3.066 sec 3.281 sec 0.037 sec 11.80 sec

OpenCV(2) 3.045 sec 3.265 sec 0.035 sec 11.83 sec

OpenCV(3) 1.284 sec 1.342 sec 0.014 sec 4.811 sec

OpenCV(4) 1.274 sec 1.322 sec 0.015 sec 4.812 sec
Table 4. Runtime results of decision function of single class support vector machine benchmarked on a SONY VAIO™PCG-

81112M, SaC-mt 1T/8T = SaC on CPU executed with 1 and 8 threads, SaC-cuda = SaC implementation, CUDA-

manual = CUDA implementation, OpenCV(1) = OpenCV2.3v without CUDA and TBB support, OpenCV(2) =

OpenCV2.3v with CUDA support, OpenCV(3) = OpenCV2.3v with TBB support, OpenCV(4) = OpenCV2.3v with

CUDA and TBB support.

In general, we can observe for the one-class SVM use case in Table 3 and Table 4 that we achieve a speedup

for all multi-core implementations (i.e.,SaC-mt 8T, OpenCV(3), OpenCV(4)) in opposite to single threaded

execution (i.e., SaC-mt 1T, OpenCV(1), OpenCV(2)). Especially for the test data a1a, a9a, and australian the

OpenCV implementation performs better than the SaC one. For the test data w8a the SaC implementation
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on CPU showed the best runtime performance. This can be explained due to the high sparseness of the data

matrix.

sparseness of

data set features

a1a 88.72% 88.69%

a9a 88.72% 88.69%

australian 20.04% 13.59%

w8a 96.11% 94.58%
Table 5. Sparseness of the used data sets and features

In the OpenCV implementation the GPU support can be neglected because the used functions in the im-

plementation provides no GPU support. The manual coded Cuda application can outperform the SaC-cuda

approximately 4.8 times, which mainly depends on the sparseness of the input matrices.

Concerning optimization strategies, we can say that OpenCV offers an optimized Streaming SIMD Exten-

sions 2 (SSE2) code. SSE2 is a processor supplementary instruction set for modern 32-bit x86 and 64-bit x64

Single-Instruction, Multiple-Data (SIMD) architectures, where many of the basic arithmetic functions can run

significantly faster. OpenCV also contains Intel®Threading Building Blocks (TBB)26 support for several func-

tions. TBB is a C++ template library which offers a complete threading mechanism on modern multi-core

processors. The advantages of this library are easy and efficient handling ( application engineers do not need

to be threading experts), scalable performance and a higher-level, task-based parallelism. In our example TBB

is irrelevant as we do not use OpenCV functions that support this library. OpenCV applies the TBB only to

OpenCV applications, e.g., haartraining, traincascade, and not to basic arithmetic/filter operations.

The optimization strategy of SaC is different. One of the major design principles of SaC is the With-loop

construct, which supports the specification of shape-invariant array operations. All primitive array operations

of SaC can be defined as with-loops within a standard library rather than being implemented as part of the

compiler. The basic idea is to use with-loops as a universal representation for array operations and to develop

a general transformation scheme that allows the concentration of individual with-loops into complex ones that

exposes a more favorable computation to memory load/store ratio and reduces the need for synchronization and

communication in parallel execution. Together, with-loop-folding, with-loop-fusion and with-loops27

stepwise transform any nesting of primitive array operations into a single loop construct that contains an element-

wise specification of the resulting array. During the compilation process various conventional optimization

techniques,28,29 such as function inlining, constant folding, constant propagation, loop unrolling, and dead code

removal, are applied to produce efficiently executable code. This code is fully automatically parallelized using
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Posix™threads2,30 or CUDA.3 The net result is that application programmers can concentrate on the science of

their problem area, rather than being forced to become experts in parallel programming or GPU programming.

6. EXPERIENCES

This section evaluates various key values, i.e., programmability, understandability, productivity, maintainability,

IDE support and CPU/GPU execution time, based on developer statements. Future development concerns

make the choice of application implementation language a crucial decision. We investigated these issues by

implementing our mentioned applications in C++/OpenCV, Matlab, CUDA and SaC taking care in software

engineering aspects during the whole application development life cycle. As a starting point, C programming skills

are rated as neutral to allow comparison of language characteristics with other tools, languages and frameworks.

programmability understandability productivity maintainability IDE support
execution time

CPU GPU

C++/OpenCV ○ ○ ○ ○ ○ ○ ○

Matlab + ○ ○ + ++ −− ○

CUDA − − −− ○ + ○ ++

SAC ○ ○ ++ ++ −− ○ +

Table 6. Pros and cons of applied tools, languages and frameworks regarding various application development aspects

Researcher, developer and application engineers have different needs and expectations for languages and tools,

hence each language has more or less a similar programmability and understandability, because of existing assets

and drawbacks in specific application fields, e.g., Matlab is a simple to use programming language, especially

for rapid prototyping, but normally the developer has no knowledge about internal optimization strategies. For

GPU development with CUDA, the developer needs special expertise in hardware architecture and parallelization

techniques, and has to cope with a fast growing and changing technology. If the developer has good programming

skills in C++/Matlab, SaC is easy to learn and provides the programming comfort of Matlab, e.g., no pointer

arithmetic. Furthermore, SaC provides auto-parallelization and optimization over the whole application.

For rapid prototyping development, Matlab offers high productivity, our experience is that in several cases

a re-design/re-implementation, using a more efficient language/framework in terms of runtime, is needed. This

is often intensive work because of the unknown optimization strategies within Matlab: results vary and are

not comparable to the other languages. By using SaC it is possible to auto-generate code for the mentioned

platforms; this is especially useful if the performance criteria of a project have changed. SaC-code can fully

automatically be compiled to multicore CPUs, manycore GPUs and the MicroGrid chip multiprocessor architec-

ture. This offers high flexibility during a project’s life cycle and it brings great advantages in maintainability.

For example, upgrading from an NVIDIA GeForce 8800 to the new NVIDIA Fermi architecture only required
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re-compilation of the exact same source code. For the other languages, maintainability has basically a similar

complexity.

A drawback of SaC is the lack of an integrated development environment (IDE support), which means

that debugging, code analysis, benchmarking, etc., can only be done via the command line, whereas the other

tools, languages and frameworks offer consistently well-engineered tool support, e.g., on GPU the profiling and

debugging can be done via external tools and integrated MS Visual Studio plugins.

The execution time on CPU and GPU is influenced by several factors, e.g., hardware environment, paralleliza-

tion and benchmarking strategies or concurrent production processes that primarily occur in industry. However,

in general, SaC performance on CPUs is as good as the performance of C if no optimization framework is used

(e.g., OpenCV, Intel-IPP, Intel-MKL, etc.). Typically, the highest performance can be achieved with manually

written CUDA code (there are some exceptions) but in some cases SaC is able to surpass manually written

CUDA code due to whole program optimization and consistently optimized parallelization strategies, especially

for array-based algorithms. Furthermore, the design of complex parallel algorithms in SaC is easier than with

CUDA; this often results in a bug-free and runtime-optimized application development.

7. CONCLUSION

In this paper, we showed the advantage of the functional array language Single Assignment C (SaC) in the field

of image processing, particularly for the anisotropic diffusion filter and for the decision function of a single class

support vector machine. Such a sophisticated filter operation can enhance faults and eliminate noise in multi-

iteration steps. This is computationally intensive, but indispensable to reduce the complexity, and consequently,

the computational costs of high-level pattern recognition and classification methods. A single class support

vector machine provides a robust and reliable classification for defect candidates which algorithmic characteristic

allows a fine-grained parallelization and hence an optimal performance gain.

Due to industrial needs for balance between scalable and high-performance applications on the one hand and

the demand for constant or lower development costs on the other hand, we conducted a benchmarking experiment

in which we compared the development effort using SaC and the common image library OpenCV2.3v.

In terms of language syntax, SaC is similar to Matlab because of the definition of various Matlab-like

operations. Furthermore, with SaC development time can be reduced by the well-known C/C++ semantics, yet

offering side-effect free semantics, most notably due to the absence of pointers and hardware virtualization. The

hardware virtualization allows flexible and fast development on architectures corresponding to CPUs, GPUs or

FPGAs using the same language and the same implementation. Moreover, on multi/many-core architectures, as
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well as on GPUs, SaC with auto-parallelization is often able to obtain higher performance than with the other

languages. Additionally, from the economic point of view, SaC provides us with an extremely good balance

between time of development and performance.

Although SaC is well-suited for image processing as well as array based algorithms because of data-parallelism

and n-dimensional array support, it provides limited support for development and debugging tools. This will be

changed in the future by an intensive enhancement of SaC and community building.
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