
On Programming Scienti�c Applications in Sac -

a Functional Language Extended by a

Subsystem for High-Level Array Operations

Sven-Bodo Scholz

Dept of Computer Science, University of Kiel, 24105 Kiel, Germany

e-mail: sbs@informatik.uni-kiel.de

Abstract. This paper discusses some of the pros and cons of extending

a simple functional language called Sac (for Single Assignment C) by

array operations similar to those that are available in Apl. The array

operations in Sac are based on the -calculus, an algebra of arrays which

provides a formalism for specifying and simplifying array operations in

terms of index set manipulations.

The programming techniques made possible by Sac are demonstrated

by means of a functional program for the approximation of numerical

solutions of partial di�erential equations by multigrid relaxation. This

application is not only of practical relevance but also fully exposes the

avors of using high-level array operations. In contrast to speci�cations

in other languages, e.g. in Fortran or Sisal, the Sac program is well

structured, reasonably concise, and - what is most important - invariant

against dimensionalities and shapes. However, sophisticated compilation

techniques are necessary to avoid, whenever possible, the creation of

temporary arrays and to eliminate redundant operations.

The paper also includes performance �gures for a Sac implementation of

the NAS-mgrid-benchmark which are competetive with those of a Sisal

implementation.

1 Introduction

Scienti�c computations often require numerical approximations for solutions of

partial di�erential equations, using sophisticated relaxation methods, which usu-

ally involve arrays of 10

6

.. 10

8

elements. Many of the applications such as
uid

dynamic problems or weather forecasts must also be stepped through time, tak-

ing days or even weeks to run on todays supercomputers, and requiring enor-

mous memory capacities. Clever algorithms and programming techniques must

be complemented by optimizing compilers to obtain e�ciently executable code

which, whenever possible, avoids the creation of intermediate data structures

and immediately re-claims memory that is no longer needed.

There is no doubt that the low-level programming style of imperative lan-

guages is highly suited for this purpose. Explicit control over the allocation (and

de-allocation) of memory space is more or less directly placed in the hands of

the programmer and can be adapted exactly to the needs of a given applications.

The concept of multiple assignments allows to overwrite arrays no longer needed

(and thus to re-use space that is already allocated), and iteration loops can be

made to traverse, by properly chosen starts, stops and strides, exactly the array

entries which contribute to the desired results.

Most of the e�ciency of imperative programs derives from the rigorous ex-

ploitation of side-e�ects due to multiple assignments. Unfortunately, side-e�ects

stand in the way of splitting large programs into concurrently executable parts.

Since variables may be shared among them, it is the responsibility of either the

programmer or of the compiler to organize the entire computation in a way that

produces deterministic results irrespective of varying execution orders.

Functional languages are free of side-e�ects and therefore appear to be ideal

candidates for non-sequential processing which in scienti�c computations is highly

desirable to keep program runtimes within reasonable limits. The absence of side-

e�ects, however, causes considerable problems with the e�cient implementation

of array operations. Conceptually, they must consume their operand arrays and

create new result arrays, rather than overwriting existing ones, which generally

is very costly in terms of both memory space and execution time expended. In-

ferring by static analysis which operations may overwrite their operands is not

in all cases decidable [AP95], doing it at runtime in
icts considerable overhead

for reference counting.

Functional languages such asMiranda [Tur86] orMl [QRM

+

87] provide lit-

tle direct support for arrays. Haskell [HAB

+

95] includes arrays as data types,

using zf-expressions (comprehensions) to generate array entries, but perfor-

mance of the compiled code so far is not very competitive. Sisal [BCOF91] and

all major data
ow languages, e.g., Id and Val [Nik88, AD79], provide control

constructs for the traversal of array entries very similar to those of imperative

languages, but strictly enforce the single assignment rule. Owing to very sophisti-

cated compilation techniques, Sisal programs are known to outperform equiva-

lent Fortran programs on multiprocessor systems[Can92]. However, Sisal does

not o�er substantial advantages in terms of programming techniques. Other than

introducing another syntax, the programmer is still asked to specify array oper-

ations as iteration loops whose index variables and index ranges must be strictly

adapted to array dimensionalities and shapes.

Integrating into functional languages an array processing concept similar to

that of Iverson's Apl [Ive62] considerably improves high-level array processing.

Work to this e�ect has been reported in [Sch86, SBK92], which describes how

array operations may be supported by graph reduction machinery, and in [Tu86,

TP86], which introduces a functional language FAC based on Apl syntax and

on a lazy semantics.

Arrays in Apl are treated as conceptual entities which can be operated upon

by high-level structuring and value-transforming primitives. Explicit speci�ca-

tions of iteration loops (which often are the source of annoying errors due to

incorrectly chosen starts, stops or strides) can be avoided in many cases.

Beyond these pragmatic advantages, the Apl approach has also stimulated

the development of an algebra of arrays, called the -calculus [Mul88, Mul91,

MJ91]. It is based on a small set of absolutely essential array operations which

are solely de�ned in terms of dimensionalities, shapes and indexing functions.

By application of the rules of this algebra, complex array expressions can be

consequently simpli�ed prior to actually compiling them to code, thus avoiding

intermediate arrays whenever possible. Extending the -calculus by a subset

of high-level structuring and value transforming primitives yields a full-
edged

subsystem for array processing which can be smoothly integrated into functional

languages.

This paper is to investigate the pros and cons of programming real life sci-

enti�c applications in the functional language Sac[Sch94, GS95] (for Single As-

signment C) which includes high-level primitives for array operations as in the

 -calculus. Sac is speci�cally designed to

{ provide a functional language with a syntax very similar to that of C in

order to ease, for a large community of programmers, the transition from an

imperative to a functional programming style;

{ support high-level array operations which are invariant against dimensional-

ities and shapes, liberate programming, whenever possible, from tedious and

error-prone speci�cations of starts, stops and strides for array traversals, and

also allow for term simpli�cations which avoid the creation of intermediate

arrays;

{ facilitate compilation to host machine code which can be e�ciently executed

both in terms of time and space demand.

Section 2 gives a brief introduction into the basic language constructs of Sac,

and Section 3 introduces the high-level array operations provided by Sac. As

an application problem, a program for the approximation of numerical solutions

of partial di�erential equations by multi-grid relaxation [Hac85, HT82, Bra84]

is extensively studied in Section 4. This application is not only of practical rele-

vance, but also of interest with respect to the programming techniques required

for the array operations involved. Section 5 outlines how a compiler actually pro-

duces e�ciently executable code from the the program speci�cations presented

in Section 4. Section 6 compares the performance of a Sac implementation of the

multigrid algorithm from the NAS-benchmarks [BBB

+

94] with that of equivalent

Sisal and Fortran programs.

2 Sac - Single Assignment C

Sac is a strict, purely functional language whose syntax in large parts is identical

to that of C. In fact, Sac may be considered a functional subset of C extended

by high-level array operations which may be speci�ed in a shape-invariant form.

It di�ers from C proper mainly in that

{ it rules out global variables and pointers to keep functions free of side-e�ects,

{ it supports multiple return values for user de�ned functions, as usual in many

data
ow languages[AGP78, AD79, BCOF91],

{ it supports high-level array operations, and

{ programs need not to be fully typed.

Fig. 1 illustrates the similarity to C by means of a Sac implementation of the

Euclidian algorithm for computing the greatest common divisor of two integers,

22 and 27 in the particular case. It consists of three function de�nitions: a func-

int gcd(int high, int low)

{

if (high < low) {

mem = low;

low = high;

high = mem;

};

while(low != 0) {

quotient, remainder = modulo(high, low);

high = low;

low = remainder;

}

return(high);

}

int, int modulo(int x, int y)

{

quot = to_int(x/y);

remain = x - quot*y;

return(quot, remain);

}

int main ()

{

return(gcd(22, 27));

}

Fig. 1. Sac program for computing the greatest common divisor.

tion gcd which implements the Euclidian algorithm, a function modulo which

computes the quotient and the remainder of the division of two integer numbers,

and the main function which speci�es the goal expression to be computed.

Two di�erences to a C implementation can be observed: the absence of type

declarations for local variables, e.g. for mem, quotient, and remainder in the

de�nition of gcd, and the usage of two return values for the function modulo.

Type declarations for local variables are optional since Sac requires a sophis-

ticated type inference system to deal with arrays of varying dimensionalities and

shapes. However, type declarations for parameters and return values of functions

are mandatory to aid the type system in resolving function overloading. Since

Sac, in contrast to C, does not include pointers or records, there is no other way

of returning multiple function values but to make them explicit.

Otherwise, this Sac program uses language constructs which syntactically

are exactly the same as in C, i.e. assignments, conditionals, and loop constructs.

Sac programs can be straightforwardly transformed into nestings of let(rec)-

expressions, conditionals and local function de�nitions as they typically occur

in other functional languages, i.e. a functional semantics for Sac can be easily

de�ned in terms of these constructs (see [Sch96]).

3 Array-Processing in Sac

The array concept supported by Sac is based on the -calculus, an algebra

of arrays [Mul88, Mul91] which provides a formal apparatus for specifying and

simplifying array operations in terms of indexed memory accesses in a form

that is independent of dimensionalities and shapes, treating arrays, whenever

appropriate, as conceptual entities. An array is represented by a shape vector

which speci�es the number of elements per axis, and by a data vector which lists

all entries of the array. For instance, a 2 � 3 matrix

�

1 2 3

4 5 6

�

has shape vector

[2; 3] and data vector [1; 2; 3; 4; 5; 6]. The set of legitimate indices can be directly

infered from the shape vector as

f[i

1

; i

2

] j 0 � i

1

< 2; 0 � i

2

< 3g

where [i

1

; i

2

] refers to the position (i

1

� 3 + i

2

) of the data vector.

A small set of primitives su�ces to express all structuring operations on ar-

rays as modi�cations of their shapes. By introducing a function that converts

array indices into o�sets within data vectors, the translation of -primitives into

loops of data vector accesses can be speci�ed in the -calculus itself. In combi-

nation with dedicated transformation rules, this allows for a formal reduction of

arbitrarily nested array operations to starts, stops, and strides of direct index-

ing schemes, from which e�ciently executable code which avoids the creation of

super
uous intermediate data structures can be directly generated.

In Sac, arrays are generally speci�ed as expressions of the form

reshape(shape vector, data vector)

where shape vector and data vector are speci�ed as lists of elements enclosed in

square-shaped brackets. Since 1-dimensional arrays are in fact vectors, they can

be abbreviated as

[v

1

; :::; v

n

] � reshape([n], [v

1

; :::; v

n

]) .

Most of the primitives of the -calculus are made available and de�ned as

primitive functions, using the following syntax

1

:

1

Note, that wherever in these de�nitions there is a vector or an array as argument,

there may be expressions that evaluate to these data structures.

Let a, b denote arrays, let v=[v

0

; :::; v

k�1

] denote a vector of k integers, then

dim(a) returns the dimensionality, i.e., the number of axes, of the array a;

shape(a) returns the shape vector of a;

psi(v, a) � a[v] returns the subarray of a selected by the index vector

v, provided that k � dim(a) and that v � shape(a) component-wise over

all indices j 2 f[0]; :::; [(k� 1)]g, otherwise it is unde�ned;

take(v, a) returns the subarray of a with shape v from the front ends of the

respective axes in a, provided that 0 � v � shape(a) component-wise,

otherwise it is unde�ned;

drop(v, a) returns the subarray of a with shape(shape(a)-v) from the

back ends of the respective axes, provided that 0 � v � shape(a) com-

ponent-wise, otherwise it is unde�ned;

cat(k, a, b) catenates the arrays a and b along their k

th

axis if the shapes

along the other axes are same, otherwise it is unde�ned;

All binary operations de�ned on scalar values are extended to component-

wise operations on pairs of arrays and scalar values, as well as on pairs of arrays of

the same shapes. A few examples are given in �g. 2 to illustrate these operations.

Let a be a 2� 3 matrix with a =

�

1 2 3

4 5 6

�

, then the following holds:

reshape([2,3], [1,2,3,4,5,6]) == a

shape(a) == [2,3]

dim(a) == 2

psi([1,2], a) == a[[1,2]] == 6

psi([1], a) == a[[1]] == reshape([3], [4,5,6]) == [4,5,6]

dim(psi([1], a)) == 1

take([2,1], a) == reshape([2,1], [1,4]) != [1,4]

take([1,1], a) == reshape([1,1], [1]) != 1

drop([1,1], a) == reshape([1,2], [5,6]) != [5,6]

dim(take([2,1],a)) == dim(take([1,1],a)) == dim(drop([1,1],a)) == 2

dim([1,4]) == dim([5,6]) == 1

shape([1,4]) == shape([5,6]) == [2]

cat(1, a, reshape([2,1], [7,8])) == reshape([2,4], [1,2,3,7,4,5,6,8])

2*a == a+a == reshape([2,3], [2,4,6,8,10,12]) .

Fig. 2. Example applications of the primitive array operations of Sac.

The primitive functions introduced so far, in one way or another, a�ect all

elements of the argument array(s) in the same way. Unfortunately, this may

lead to rather awkward programs if only subarrays need to be operated on, or

di�erent operations need to be carried out on non-overlapping subarrays.

As a simple example, consider the problem of adding some constant value,

say 1, to the inner elements of an array a of arbitrary shape. These elements are

identi�ed by index vectors i vec from the interval 0*shape(a)+1 <= i vec <=

shape(a)-2. Expressing this computation in terms of an addition function which

uniformly applies to all array elements requires that the array �rst be dismantled

of all subarrays speci�ed by index vectors with at least one zero or one maximal

component, then the addition be performed on the remaining array, and �nally

the subarrays that have been taken o� be attached again by catenation.

What needs to be cut o� before and glued on after the addition of 1 in the

special case of a two-dimensional array are the rows and columns with the lowest

and highest indices. This leads to the following piece of Sac-program:

{ ...

m = psi([0], shape(a));

n = psi([1], shape(a));

upper_row = take([1,n], a);

lower_row = drop([m-1,0], a);

left_col = drop([1,0], take([m-1,1], a));

right_col = take([m-2,1], drop([1,n-1], a));

inner = take([m-2,n-2], drop([1,1], a));

middle_section = cat(1, left, cat(1, inner+1, right));

result = cat(0, upper, cat(0, middle_section, lower));

... }

The disadvantages of this solution are obvious: The program is quite com-

plicated and compilation to e�ciently executable code is di�cult, and last not

least, it is dimension-speci�c: an adaptation to other dimensionalities requires

extensive re-writing.

To overcome these programming problems (and the ensuing compilation

problems as well), a more versatile construct for array operations is essential.

For this purpose, Sac provides a variant of ZF-expressions called with-loops

by which operations over pre-speci�ed index ranges can be speci�ed in a shape-

independent form.

The syntax of with-loops is de�ned in �g. 3. They consist of three parts: a

generator part, a �lter part, and an operation part. The generator part de�nes

lower and upper bounds for a set of index vectors and an 'index variable' which

represents a vector of this set. The �lter part consists of boolean expressions that

usually depend on the index variable. They restrict the set of index vectors to

those for which all �lter expressions evaluate to true. The operation part �nally

speci�es the operation to be performed on each element of the index vector set.

Basically, three di�erent kinds of operation parts are available (see ConExpr in

�g. 3). Their functionality is de�ned as follows:

Let shp and idx denote Sac-expressions that evaluate to vectors, let array

denote a Sac-expression that evaluates to an array, and let expr denote an

arbitrary Sac-expression. Furthermore, let fold op be the name of a binary

commutative and associative function (FoldFun in �g 3) with neutral element

neutral. Then

WithExpr) with (Generator [; F ilter]

*

) Operation

Generator) Expr <= Identifier <= Expr

Filter) Expr

Operation) [f LocalDeclarations g] ConExpr

ConExpr) genarray (Expr ; Expr)

j modarray (Expr ; Expr ; Expr)

j fold (FoldFun ; Expr ; Expr)

FoldFun) + j � j Identifier

Fig. 3. with-loops in Sac.

{ genarray(shp, expr) generates an array of shape shp whose elements are

the values of expr for all index vectors from the speci�ed set, and 0 otherwise;

{ modarray(array, idx, expr) returns an array of shape shape(array)

whose elements are the values of expr for all index vectors from the speci�ed

set, and the values of array[idx] at all other index positions;

{ fold(fold op, neutral, expr) sets out with the neutral element neutral

to fold with the binary operation fold op the values of expr found in all index

positions from the speci�ed set. It is the responsibility of the programmer to

make sure that the function fold op is commutative and associative in order

to guarantee deterministic results.

To increase program readability, local variable declarations may precede the

operation part of a with-loop. They allow for the abstraction of (complex)

subexpressions from the operation part.

Using these with-loops, the above example problem can be speci�ed as

{ ...

result = with(0*shape(a)+1 <= i_vec <= shape(a)-2)

modarray(a, i_vec, a[i_vec]+1);

... } .

Apart from the fact that this speci�cation is more concise and easier to under-

stand, it is also invariant against the shape and the dimensionality of a.

4 Programming numerical Applications in Sac: an Example

To illustrate how Sac programs for real world application problems look like,

we consider, as an example, approximations of numerical solutions for Poisson

equations, i.e., for partial di�erential equations (PDEs) of the general form

� u (x

0

; : : : ; x

p�1

) = f (x

0

; : : : ; x

p�1

) j (x

0

; : : : ; x

p�1

) 2
 ;

where � denotes the Laplace-operator and
 denotes the domain within which

solutions for u are de�ned, given some speci�c boundary values. For the sake of

simplicity, these boundary values are assumed to be

u (x

0

; : : : ; x

min

q

; : : : ; x

p�1

) = u (x

0

; : : : ; x

max

q

; : : : ; x

p�1

) = 0

for all q 2 f0; : : : ; p� 1g throughout the example program, though in real world

applications the boundary conditions may be more complicated.

Numerical solutions for Poisson equations are based on Gauss-Seidel or Jacobi

relaxation algorithms. Both use discretizations of the PDEs on grids of some �xed

mesh size h. They take the form

L u (i

0

; : : : ; i

p�1

) = h

2

� f (i

0

; : : : ; i

p�1

)

in which all x

q

2 fx

0

; : : : ; x

p�1

g are replaced by indices i

q

= dx

q

� x

min

q

=he

and the values of u and f are represented as p-dimensional arrays, with i

q

2

f0; : : : ; n

q

� 1g for all q 2 f0; : : : ; p � 1g. The discretizised Laplace operator L

adds up, in every inner grid point (i

0

; : : : ; i

p�1

) 2 I

0

� : : : � I

p�1

with I

q

2

f1; : : : ; n

q

�2g, weighted values of u in all adjacent points and in the point itself,

to compute a new p-dimensional array u

0

.

Using a p-dimensional array D of elements D[i

0

; : : : ; i

p�1

] with i

j

2 f0; 1; 2g

for all j 2 f0; : : : ; p� 1g, this relaxation step is formally speci�ed as:

8i

0

2 f1; :::; n

0

� 2g:::8i

p�1

2 f1; :::; n

p�1

� 2g :

u

0

[i

0

; :::; i

p�1

] =

2

P

j

0

=0

:::

2

P

j

p�1

=0

D[j

0

; :::; j

p�1

] � u[(i

0

+ j

0

� 1); :::; (i

p�1

+ j

p�1

� 1)]

:

Both relaxation algorithms require that this computation be repeated several

times until u

0

approximates the solution reasonably well, i.e. until a relaxation

step changes the values in all grid points by less than some pre-speci�ed threshold

value.

With i vec=[i

0

; : : : ; i

p�1

] and j vec=[j

0

; : : : ; j

p�1

] denoting index vectors

and a denoting an array , relaxation steps as above may be programmed in Sac

in a completely shape-independent form as

{ ...

new_u = with(shape(u)*0+1 <= i_vec <= shape(u)-2) {

val = with(shape(D)*0 <= j_vec <= shape(D)-1)

fold(+, 0, D[j_vec] * u[i_vec+j_vec-1]);

} modarray(u, i_vec, val);

... } .

The inner with-loop of this Sac-statement computes a new value val in grid

point [i

0

; : : : ; i

p�1

] by forming, with fold, the weighted sum of the values in

all adjacent points (and in the point itself). The outer with-loop steps through

all but the boundary grid points to update the values of u by val, and to assign

the entire array thus computed to new u.

Note that the number of components of the index vectors is solely deter-

mined by the shapes of the arrays whose elements must be traversed, i.e., by

shape(u) for the outer loop, and by shape(D) for the inner loop. The term

shape(u)*0+1 �rst multiplies all components of shape(u) by 0, and then adds

1, returning as the lower bound for i vec a vector of p elements [1,: : :,1], and

the term shape(u)-2 subtracts from all components n

q

j q 2 f0; : : : ; p � 1g of

the vector shape(u) the value 2, returning as the upper bound for i vec a p-

dimensional vector [n

0

� 2; : : : ; n

p�1

� 2]. Since shape vectors are part of the

array speci�cations, this piece of program can be applied to arrays of any given

shape.

Jacobi or Gauss-Seidel relaxation is known to reduce fairly quickly high-

frequency error components but does poorly on low-frequency errors. This is

due to the slow point-to-point propagation of corrected values through the entire

grid, which in real life applications may have up to 10

4

points in each dimen-

sion. A well-established remedy for this problem are so-called multigrid methods

which embed relaxation steps into a recursive �ne-to-coarse grid approximation,

followed by a coarse-to-�ne grid correction [Hac85, HT82, Bra84].

Roughly speaking, multigrid relaxation applies the Jacobi or Gauss-Seidel re-

laxation algorithm recursively to grids of mesh sizes h

1

; : : : ; h

k

; h

(k+1)

; : : : ; h

m

with h

(k+1)

= 2 � h

k

. It usually sets out with the �nest grid and recur-

sively works through some �nite sequence of error approximations on increas-

ingly coarser grids (which propagate errors in increasingly larger strides over the

points of the original grid), followed by the passage of error corrections in the op-

posite direction (from coarser to �ner grids). The mappings from �ner to coarser

grids and vice versa are done by calculating weighted averages of the values in

adjacent grid points. To illustrate this, �g. 4 depicts two arrays of dimensionality

two. The black dots are to represent grid points belonging to a coarse grid of

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

t t t

t t t

t t t

6

?

-�

@

@I

�

�	

�

��

@

@R

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

t t

t t

6

-�

��

-

?

@

@R

�

6

@

@I

�

?

�

�	

Fig. 4. The �ne-to-coarse and coarse-to-�ne grid mapping problem

mesh size 2 �h, whereas both the blank and black dots represent the grid points

that belong to a �ner grid of mesh size h. The spider in the center of the left

grid indicates how the elements of the coarser grid are calculated from those of

the �ner grid during a �ne-to-coarse mapping. Conversely, the spider in the right

grid shows from which elements of the coarser grid the elements of the �ner grid

are interpolated during a coarse-to-�ne mapping.

Fine-to-coarse mapping, in fact, is very similar to relaxation: the value in a

point of the coarser grid must be computed as a weighted sum over the values in

all surrounding points, including the actual value in the point itself, of the �ner

grid. Let u c, u f and W respectively denote the arrays by which the coarser grid,

the �ner grid and the weight coe�cients are represented, then the �ne-to-coarse

mapping may be speci�ed in Sac in a shape-invariant form as

{ ...

u_c = with(0*shape(u_f)+1 <= i_vec <= shape(u_f)/2-1) {

val = with(0*shape(W) <= j_vec <= shape(W)-1)

fold(+, 0, W[j_vec] * u_f[2*i_vec+j_vec-1]);

} genarray(shape(u_f)/2+1, val);

... }

with shape(u c)=shape(u f)/2+1, and with shape(W)=[3,: : :,3] and dim(W)=

p. For the two-dimensional case, a typical array of weight coe�cients is

W = 1=4 � C with C =

0

B

@

1=4 1=2 1=4

1=2 1 1=2

1=4 1=2 1=4

1

C

A

;

of which the value 1 in the center coincides with a point of the �ner grid which

maps directly into a point of the coarser grid (or coincides with the center of

the spider in the left picture of �g. 4). This weight array lets the value in each

point of the �ner grid contribute with di�erent weights to adjacent values of the

coarser grid: 1/4 if it is in the center of the spider, 1/8 each to two points on

each side if it is on a horizontal or vertical axis of the grid, and 1/16 each to

four points if it is on the intersection between two diagonals.

The basic idea of specifying coarse-to-�ne grid mapping in a shape-invariant

form is to �rst initialize the array for the �ner grid, which must have twice the

shape of the coarser grid, in every other point along each axis with the respective

values of the coarser grid, and all points in between with zero values. Then all

values of the �ner grid are computed in the same way as for the �ne-to-coarse

mapping, i.e., by adding up, in each point of the �ner grid, weighted values of

all points that are adjacent to it. This may be done with the same weight array

as above, except that all its entities have to be multiplied by 4, i.e. we can use

C as weight array for the coarse-to-�ne grid mapping.

Thus, if the center of the weight array C coincides with a point of the coarser

grid (see also the spider in the right picture of �g. 4), it reproduces the value

in that point since it is multiplied by 1, and all surrounding points contribute

zero values. Similarly, the values in points between two non-zero elements on a

horizontal or vertical axis are computed as the sum of their values, multiplied

by 1/2, and the values of points on the intersection between two diagonals are

computed as the sum of four non-zero values, multiplied by 1/4. This algorithm

can be implemented in Sac as follows:

{ ...

u_f = with(0*shape(u_c) <= i_vec <= shape(u_c)*2-3)

genarray(shape(u_c)*2-2, 0);

u_f = with(0*shape(u_c) <= i_vec <= shape(u_c)-1)

modarray(u_f, 2*i_vec, u_c[i_vec]);

u_f = with(0*shape(u_f)+1 <= i_vec <= shape(u_f)-2) {

val = with(0*shape(C) <= j_vec <= shape(C)-1)

fold(+, 0, C[j_vec] * u_f[i_vec+j_vec-1]);

} modarray(u_f, i_vec, val);

... } .

This piece of program, exept for the coe�cients of the weight array, again

remains invariant against changing dimensionalities and shapes. However, there

is a simple algorithm by which the coe�cients of the weight array may be com-

puted dependent on the dimensionality p of the grid. Given that all entries of

the weight array have p-dimensional index vectors within range

[0; : : : ; 0] <= i vec <= [2; : : : ; 2]

and that the entry in the center has index vector i vec

C

= [1; : : : ; 1], all there

is to do is to compute i vec - i vec

C

= i

D

, count the number n of non-zero

components in the vector i

D

, and use the value 2

�n

as entry C[i vec]:

{ ...

C = with(shape(u)*0 <= i_vec <= shape(u)*0+2) {

n=0;

for(i=0; i<dim(u); i++) {

if(i_vec[[i]] != 1)

n++;

}

val = pow(2,-n);

} genarray(shape(u)*0+3, val);

... } .

Apart from the with-loops introduced sofar, the full multigrid program primar-

ily consists of while-loops which iterate through relaxation steps embedded in

successive �ne-to-coarse grid mappings followed by successions of coarse-to-�ne

grid mappings. As these iterations are quite straightforward and not directly

related to the shapes of the arrays involved, they are omitted here.

5 A Note on Compilation

The program fragments speci�ed in the preceding section are essential compo-

nents of a Sac implementation of multigrid relaxation which can be uniformly

applied to argument arrays (grids) of varying dimensionalities and shapes. How-

ever, this generality may have to be paid for by some penalty on runtime per-

formance, unless compilation to executable code can be parameterized at least

by dimensionalities, if not shapes, of actual argument arrays. For this purpose,

the Sac compiler includes an elaborate type inference system to infer through

a hierarchy of array types the most speci�c of these parameters statically. This

enables the compiler to translate Sac function de�nitions into function codes

or with-loops into nestings of for-loops that are exactly adapted to the array

parameters which actually have to be dealt with. If necessary, the compiler may

even generate several instances of function or with-loop codes to operate on

arrays of changing dimensionalities and shapes.

To convey the basic idea of how the Sac compiler goes about converting

with-loops into executable code, we consider, as an example, the program frag-

ment which implements single relaxation steps.

For two-dimensional arrays with a shape vector of the form [n,n], it can be

specialized at the Sac-level as

{ ...

new_u = with([1,1] <= i_vec <= [n-2,n-2]) {

val = with([0,0] <= j_vec <= [2,2])

fold(+, 0, D[j_vec] * u[i_vec+j_vec-1]);

} modarray(u, i_vec, val);

... }

simply by applying constant folding to the speci�cations of loop boundaries,

which in the particular case are two-component vectors. Assuming

D =

0

B

@

0 1=4 0

1=4 �1 1=4

0 1=4 0

1

C

A

to be the array of weight coe�cients, the inner with-loop can be further spe-

cialized as

{ ...

new_u = with([1,1] <= i_vec <= [n-2,n-2]) {

val = 0.25 * u[i_vec+[-1,0]] + 0.25 * u[i_vec+[0,-1]]

- a[i_vec]

+ 0.25 * u[i_vec+[0,1]] + 0.25 * u[i_vec+[1,0]];

} modarray(u, i_vec, val);

... }

by means of loop unrolling in combination with another constant folding step.

Following these high-level optimizations, the Sac-to-C compiler takes over to

compile the remainingwith-loop into two nested C-for-loops. Since Sac repre-

sents arrays by shape and data vectors, the index vectors i vec which are to se-

lect array elements must be converted, by means of a function idx to off(i vec,

shape) (with shape = [n,n] in the particular case), into o�sets into the data

vector. Taking offset as a variable that carries actual values of idx to off(i vec,

[n,n]) the C-code for the with-loop looks like this:

{ ...

offset = 0;

/* copy non-indexed elems of dim 0 */

for(tmp=0; tmp <=n; tmp++)

new_u_data[offset++] = u_data[offset];

for(i_vec_data[0]=1; i_vec_data[0]<=n-2; i_vec_data[0]++) {

/* copy non-indexed elem of dim 1 */

new_u_data[offset++] = u_data[offset];

for(i_vec_data[1]=1; i_vec_data[1]<=n-2; i_vec_data[1]++) {

val = ... ; /* compiled code for the weighted */

/* summation of neighbors */

new_u_data[offset++] = val;

}

/* copy non-indexed elem of dim 1 */

new_u_data[offset++] = u_data[offset];

}

/* copy non-indexed elems of dim 0 */

for(tmp=0; tmp <=n; tmp++)

new_u_data[offset++] = u_data[offset];

... }

In order to generate e�ciently executable code for the expression that computes

val for each index vector i vec, it is critically important to simplify as much as

possible accesses in the data vector representation u data of u to the four ele-

ments adjacent to i vec (whose values have to added up). To do so, we make use

of an optimization called index-vector-elimination which is based on the fact that

idx to off(i vec + j vec, shp)=idx to off(i vec, shp)+idx to off(j vec,

shp). This renders it possible to transform a selector term of the form, say, u[

i vec + [0,-1]] into an access to u data which is given as:

u data[idx to off(i vec + [0,-1], [n,n])]

= u data[idx to off(i vec, [n,n]) + idx to off([0,-1], [n,n])]

= u data[idx to off(i vec, [n,n]) - n]

Since the variable offset in the above piece of program already holds actual

values of idx to off(i vec, [n,n]), the entire statement can, by similar trans-

formation of the other four terms, be compiled to

{ ...

val = 0.25 * u_data[offset-n] + 0.25 * u_data[offset-1]

- u_data[offset]

+ 0.25 * u_data[offset+1] + 0.25 * u_data[offset+n];

new_u_data[offset++] = val;

... }

as the body of the innermost for-loop. This optimization reduces the indexing

arithmetic for accesses into the data vector to what is absolutely necessary.

Beyond that, the Sac-to-C compiler, of course, performs other optimizations

which belong to the standard repertoire and, therefore, will not be outlined here.

6 Performance Figures

In this section we present some comparative performance measurements which

show to which extend the Sac approach is competitive, in terms of program

runtimes and memory space consumption, with Fortran and Sisal implemen-

tations. This comparison is based on the multigrid kernel MG of the NAS-

benchmarks [BBB

+

94] which performs some prespeci�ed number of complete

multigrid cycles on a three-dimensional array of 2

n

; n 2 f3; 4; :::g entries per

axis in the �nest grid. Each cycle moves through a sequence of mappings from

the �nest to the coarsest grid of 4x4x4 entries, followed by a sequence of alter-

natingly doing relaxations and coarse-to-�ne grid mappings back to the �nest

grid.

The Fortran implementation of this algorithm was directly taken from the

benchmark

2

, the Sisal program was hand-coded to perform the same elemen-

tary computations in the same order as the Fortran benchmark, whereas the

Sac program uses the shape-invariant speci�cations of relaxation steps and of

mappings between �ner and coarser grids as outlined in Section 4.

The hardware platform used for this contest was a Sun UltraSparc-170

with 192MB of main memory. The Fortran program was compiled by the

Sun Fortran compiler f77 version sc3.0.1 which generates native code directly.

The Sisal and Sac programs were compiled by the Sisal compiler osc, version

13.0.2, and by the Sac compiler sac2c, respectively, both of which produce C-

code as output. The Gnu-C-compiler gcc version 2.6.3 was used to compile the

C-code to native machine code. Program execution times and space demands

were measured by the operating system timer and process status commands,

respectively.

Fig.5 shows the time and space demands of all three multigrid implementa-

tions for three di�erent problem-sizes, these being 32, 64, and 128 elements per

axis. The bars in the left diagram depict execution times relative to that of the

Sac program, with absolute times for one full multigrid cycle annotated inside

the bars. For all three problem sizes the execution time of the Sac program is

marginally shorter than that of the Sisal program, whereas the Fortran pro-

2

We only simpli�ed the initial array generation and modi�ed the problem-size.

time
timeSAC

SAC

SISAL

f77

problem-
size

mgrid_3d

1.0

0.5

1.5

32

0.
15

s

0.
16

s

0.
10

s

64

1.
12

s

1.
14

s

0.
80

s

128

9.
0s

9.
1s

6.
5s

SAC

SISAL

f77

problem-
size

mgrid_3d

32 64 128

mem
memSAC

3.0

2.0

1.0

2.
5M

B

9.
0M

B

58
M

B

3.
6M

B

11
.6

M
B

74
M

B5.
3M

B

27
.0

M
B

17
3M

B

Fig. 5. Time and Space Demand for Multigrid Relaxation on 3 Dimensional Arrays

gram, on average, takes only 70% of the time for the Sac program. The reasons

for the gap between the Fortran- and the Sac implementation are manifold.

Part of it may be attributed to the shape-independent speci�cation of the

coarse-to-�ne mapping. As a comparison with a dimension-speci�c speci�cation

shows, the overhead due to additional additions/ multiplications causes about

10% of the slowdown. Also, the Sac compiler, as of now, uses the Unix com-

mands malloc and free to allocate and de-allocate heap space. Experiences

from the implementation of the functional language KiR[Klu94] suggest that

managing some program-speci�c heap from within the code can be expected to

improve performance by another 10%. Last but not least, the C-code produced

by the current compiler version is not yet fully optimized. Experiments with

hand-coded improvements suggest that program execution times close to that

of the Fortran implementation are within reach by integrating more elaborate

optimizations.

The slightly poorer performance of the Sisal vs. the Sac implementation,

despite the highly optimizing Sisal compiler [SW85, Can89, CE95, FO95], is

presumably caused by the representation of arrays as vectors of vectors of data

elements which in
icts a considerable overhead when accessing array entries that

are adjacent to each other along other than the major axis.

3

The diagram on the right of �g. 5 compares the relative space-demands of

the three implementations. It shows that the Fortran program is the most

space-e�cient one, requiring on average only 80% of the space taken up by the

Sac program. The additional space demand of the latter can be tracked down,

by careful analysis of how both programs actually execute, to the coarse-to-�ne

grid mapping. Whereas the Fortran implementation needs to allocate only

one instance of the �ner array since it can do the interpolation of elements of

the �ner grid from those of the coarser grid directly, the Sac compiler version

faithfully creates a second array into which the updated values are placed, as it

is not yet equipped to fold with-loops whenever there is an opportunity to do

so.

3

For the next Sisal release (version 2.0)[BCOF91] an implementation of multi-

dimensional arrays as continuous memory-blocks is intended [Old92].

The memory demand of the Sisal program signi�cantly exceeds that of the

Sac program, in the case of the largest problem size by more than a factor of

two. We have not yet been able to identify the likely cause of this problem.

In order to dig a little deeper into the di�erences between the Sac imple-

mentation and the Sisal implementation, we also compared multigrid relaxation

on two- and four-dimensional arrays. Whereas the Sac program could be used

without changes, the Sisal program had to be re-written to adapt the for-loops

to the actual dimensionalities of the arrays modi�ed.

The performance measurements shown in �g. 6 nicely expose the overhead

problem-
size

SAC

SISAL

time
timeSAC

1.0

0.5

1.5

mgrid_2d

0.
17

s

0.
70

s

3.
1s

0.
13

s

0.
51

s

256 512 1024

2.
1s

problem-
size

SAC

SISAL

mgrid_2d

256 512 1024

mem
memSAC

3.0

2.0

1.0

5.
6M

B

2.
7M

B

8.
9M

B

21
.5

M
B

43
.6

M
B

79
.0

M
B

problem-
size

SAC

SISAL

time
timeSAC

1.0

0.5

1.5

0.
70

s

8 16 32

1.
00

s

10
.1

s

0.
04

0s

0.
08

1s mgrid_4d

15
.1

s

problem-
size

SAC

SISAL

8 16 32

mgrid_4d
mem
memSAC

1.0

2.0

3.0

5.
3M

B

15
.4

M
B

44
.5

M
B

14
3M

B

0.
5M

B

2.
4M

B

Fig. 6. Time and Space-Demand for Multigrid Relaxations on Di�erent Dimensional-

ities

in
icted by the array representations of Sisal which grows with the dimension-

ality of the grid. While the two-dimensional Sisal program requires only 70%

of the execution time of the Sac program, the situation is completely reverse

in the four-dimensional case. Likewise, the space demand of the Sisal program

increases relative to that of the Sac program with increasing grid dimension-

ality (from a factor of 2 for the two-dimensional case to a factor of 3 for the

four-dimensional case).

7 Conclusion

This paper was to investigate, by means of a reasonably sophisticated array pro-

cessing program (multigrid relaxation of PDEs), to which extent the integration

of high-level array programming techniques into functional languages enhances

program design and abstraction from problem-speci�c parameters, without pay-

ing too much of a performance penalty. The investigation is based on a perfor-

mance comparison between a functional variant of C called Sac, whose design

is focussed on the e�cient support of high-level array operations, and Sisal,

which is widely accepted to be the most e�cient functional language for numer-

ical applications.

Sac de�nes a set of structuring and value-transforming array operations

which are invariant against dimensionalities and shapes, and apply uniformly

to all elements (or subarrays) of arrays. They liberate programming from te-

dious and error-prone speci�cations of starts, stops and strides of iteration loops

which prescribe traversals of array entries in a particular order, and also render

programs applicable to arrays of di�erent dimensionalities and shapes.

As this paper shows, elegant and concise programming can be achieved by

the introduction of a high-level array concept similar to that of Apl, extended

by array comprehension constructs (with-loops) which, whenever necessary or

appropriate, apply operations (functions) only to selected subsets of array entries

which are speci�ed in terms of index ranges and �lter expressions. Of course,

with-loop constructs, which have been frequently used in the multigrid program,

re-introduce, as index ranges in conjunction with �lter expressions, starts, stops

and strides into programming through the back door. However, they may be

speci�ed in a shape-invariant form, and the �lters may select entries from within

the pre-speci�ed index ranges by criteria other than equidistant index positions

as they can be traversed with DO-loops.

As has been demonstrated for the example program, compilation to e�ciently

executable code of high-level programs which use a mix of array comprehensions

and primitive array operations poses no major problems. Although the Sac com-

piler used for the performance measurements still lacks some advanced optimiza-

tions as they are integrated into the Sisal compiler [SW85, Can89, CE95, FO95],

competitive performance is achieved through a type-inference system which gen-

erates dimension dependent specializations of function bodies and through a

special optimization technique for the elimination of temporary index vectors.

Further improvements of the C-code generated can be expected by the ap-

plication of the transformation rules of the -calculus, which serves as a formal

basis for the array concept of Sac. This does not only include simple optimiza-

tions of nested applications of primitive operations, e.g. take(v, (take(w,

a)) = take(v, a) but the systematic simpli�cation of complex expressions

such as the folding of two with-loops which, in the example examined in this

paper, can be expected to reduce the space-demand of the Sac implementation

to that of the Fortran implementation.

References

[AD79] W.B. Ackerman and J.B. Dennis: VAL-A Value-Oriented Algorithmic Lan-

guage: Preliminary Reference Manual. TR 218, MIT, Cambridge, MA,

1979.

[AGP78] Arvind, K.P. Gostelow, and W. Plou�e: The ID-Report: An asynchronous

Programming Language and Computing Machine. Technical Report 114,

University of California at Irvine, 1978.

[AP95] P. Achten and R. Plasmeijer: The ins and outs of Clean I/O. Journal of

Functional Programming, Vol. 5(1), 1995, pp. 81{110.

[BBB

+

94] D. Bailey, E. Barszcz, J. Barton, et al.: The NAS Parallel Benchmarks.

RNR 94-007, NASA Ames Research Center, 1994.

[BCOF91] A.P.W. B�ohm, D.C. Cann, R.R. Oldehoeft, and J.T. Feo: SISAL Reference

Manual Language Version 2.0. CS 91-118, Colorado State University, Fort

Collins, Colorado, 1991.

[Bra84] A. Brandt: Multigrid Methods: 1984 Guide. Dept of applied mathematics,

The Weizmann Institute of Science, Rehovot/Israel, 1984.

[Can89] D.C. Cann: Compilation Techniques for High Performance Applicative

Computation. Technical Report CS-89-108, Lawrence Livermore National

Laboratory, LLNL, Livermore California, 1989.

[Can92] D.C. Cann: Retire Fortran? A Debate Rekindled. Communications of the

ACM, Vol. 35(8), 1992, pp. 81{89.

[CE95] D.C. Cann and P. Evripidou: Advanced Array Optimizations for High Per-

formance Functional Languages. IEEE Transactions on Parallel and Dis-

tributed Systems, Vol. 6(3), 1995, pp. 229{239.

[FO95] S.M. Fitzgerald and R.R. Oldehoeft: Update-in-place Analysis for True

Multidimensional Arrays. In A.P.W. B�ohm and J.T. Feo (Eds.): High Per-

formance Functional Computing, 1995, pp. 105{118.

[GS95] C. Grelck and S.B. Scholz: Classes and Objects as Basis for I/O in SAC.

In T. Johnsson (Ed.): Proceedings of the Workshop on the Implementation

of Functional Languages'95. Chalmers University, 1995, pp. 30{44.

[HAB

+

95] K. Hammond, L. Augustsson, B. Boutel, et al.: Report on the Programming

Language Haskell: A Non-strict, Purely Functional Language. University

of Glasgow, 1995. Version 1.3.

[Hac85] W. Hackbusch: Multi-grid Methods and Applications. Springer, 1985.

[HT82] W. Hackbusch and U. Trottenberg: Multigrid Methods. LNM, Vol. 960.

Springer, 1982.

[Ive62] K.E. Iverson: A Programming Language. Wiley, New York, 1962.

[Klu94] W. Kluge: A User's Guide for the Reduction System �-red. Internal Re-

port 9419, University of Kiel, 1994.

[MJ91] L.M. Restifo Mullin and M. Jenkins: A Comparison of Array Theory and

a Mathematics of Arrays. In Arrays, Functional Languages and Parallel

Systems. Kluwer Academic Publishers, 1991, pp. 237{269.

[Mul88] L.M. Restifo Mullin: A Mathematics of Arrays. PhD thesis, Syracuse Uni-

versity, 1988.

[Mul91] L.M. Restifo Mullin: The 	-Function: A Basis for FFP with Arrays. In

L.M. Restifo Mullin (Ed.): Arrays, Functional Languages and Parallel Sys-

tems. Kluwer Academic Publishers, 1991, pp. 185{201.

[Nik88] R.S. Nikhil: ID Version 88.1, Reference Manual. CSG Memo 284, MIT,

Laboratory for Computer Science, Cambridge, MA, 1988.

[Old92] R.R. Oldehoeft: Implementing Arrays in SISAL 2.0. In Proceedings of the

Second SISAL Users' Conference, 1992, pp. 209{222.

[QRM

+

87] D. Mac Queen, R.Harper, R. Milner, et al.: Functional Programming in

ML. Lfcs education, University of Edinburgh, 1987.

[SBK92] C. Schmittgen, H. Bl�odorn, and W.E. Kluge: �-red

�

- a Graph Reducer

for Full-Fledged �-Calculus. New Generation Computing, Vol. 10(2), 1992,

pp. 173{195.

[Sch86] C. Schmittgen: A Datatype Architecture for Reduction Machines. In 19th

Hawaii International Conference on System Sciences, Vol. I, 1986, pp. 78{87.

[Sch94] S.-B. Scholz: Single Assignment C { Functional Programming Using Im-

perative Style. In John Glauert (Ed.): Proceedings of the 6th International

Workshop on the Implementation of Functional Languages. University of

East Anglia, 1994.

[Sch96] S.-B. Scholz: Single Assignment C { Entwurf und Implementierung einer

funktionalen C-Variante mit spezieller Unterst�utzung shape-invarianter

Array-Operationen. PhD thesis, Institut f�ur Informatik und praktische

Mathematik, Universit�at Kiel, 1996.

[SW85] S. Skedzielewski and M.L. Welcome: Data Flow Graph Optimization in IF1.

In FPCA '85, Nancy, LNCS, Vol. 201. Springer, 1985, pp. 17{34.

[TP86] H-C. Tu and A.J. Perlis: FAC: A Functional APL Language. IEEE Soft-

ware, Vol. 3(1), 1986, pp. 36{45.

[Tu86] H-C. Tu: FAC: Functional Array Calculator and its Application to APL

and Functional Programming. PhD thesis, Yale University, 1986.

[Tur86] D.A. Turner: An Overview of Miranda. SIGPLAN Notices, Vol. 21(12),

1986, pp. 158{166.

This article was processed using the L

A

T

E

X macro package with LLNCS style

