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Abstract

We introduce shape cliques, a simple way to organize a subset of the
arrays appearing in an array-language-based application into sets of iden-
tically shaped arrays - shape cliques - and show how a compiler can analyze
an application to infer membership in those cliques.

We describe an algorithm for performing shape clique inference (SCI),
and demonstrate that shape cliques can improve the performance of gen-
erated code, by permitting extension of an optimization for removal of
run-time checks, and by extending the set of arrays to which optimiza-
tions, such as Index Vector Elimination (IVE), can be applied.

Implementation of SCI in the APEX APL compiler permitted removal
of 25% of run-time checks remaining on 156 benchmarks remaining af-
ter other compiler optimizations had eliminated 72% of the 1251 checks
present in the original code. In the SAC compiler, IVE using SCI pro-
duced typical speedups of 2{14X on benchmarks operating on arrays of
non-�xed rank and shape, compared to the operation of IVE in a non-SCI
environment.

Shape clique inference data can be exploited to allow certain other
optimizations, such as loop fusion and with-loop folding, to be performed
on arrays of statically unknown shape and rank, with the potential for
signi�cant reductions in execution time.

1 Introduction

Array languages, such as APL[1], J[2], SAC[3, 4] and SISAL[5], are used in
such diverse areas as �nancial modeling, actuarial research, molecular model-
ing, signal processing, text manipulation and compression, oceanography, eco-
nomic data bases, and geophysics. Array languages permit high-level algorith-
mic expression, facilitating terse expression and rapid application development.
However, array languages are designed more for the computer between our ears
than for the silicon-based hardware of today, so their performance often su�ers,
due to run-time checking of array bounds and shape conformability, missing
optimizations, array-valued intermediate results, and so on.

We have been investigating the relationships among array shapes in applica-
tions written in array languages, with an eye toward improving the performance
and robustness of applications written in these languages. Speci�cally, we wish
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to exploit static knowledge of array shapes to generate compiled code that ex-
ecutes faster or uses less memory. Moreover, we wish to detect, statically (i.e.,
at compile time), semantic errors in applications, such as the length error or
index error of APL and J.1 Finally, we want to eliminate, whenever possible,
run-time checks for such errors, along the lines of [6].

Section 2 presents the SAC taxonomy of array shape classes [3, 7, 8]; Sec-
tion 3 introduces array shape analysis; Section 4 introduces the concept of Shape
Cliques and how they may be inferred by inspection of an application; Section 5
discusses a Shape Clique Inference algorithm that we implemented in the APEX
APL Compiler[9], a model of the algorithm, a run-time-check optimizer that
uses shape clique information to improve its performance, and quantitative in-
formation on the performance of that optimizer; Section 6 presents an extended
version of the SAC Index Vector Elimination optimization, exploiting SCI to
improve run-time performance. Section 7 discusses some potential applications
of shape cliques in code optimization. Section 8 mentions guarded shape cliques;
remaining Sections summarize our �ndings, related work, and future research
directions.

2 Array Shape Classes

Several types of arrays occur in array-language programs. In a perfect world,
we know their rank, shape, and value. For instance, the constant vector [1, 2,

3] is rank-1 { it is one-dimensional. It is of shape three { it has three elements
along its single axis { and we know the value of each of those elements. To fa-
cilitate discussion of arrays, the SAC developers introduced an array taxonomy,
denoting arrays such as the above constant as AKV : Arrays of Known Value.

A chessboard at some unknown point in a game has known rank and shape
(two and [8. 8], respectively), but unknown value, since we do not know any
of the values of the array elements (the pieces on the board). This is an AKS

array: an Array of Known Shape. These are the arrays of Fortran.
A list of cities whose current temperature is above 10C is a rank-1 array, or

vector, of unknown length, because the number of such cities is unknown, except
at a particular instant during execution. This is an AKD array: an Array of
Known Dimension. We know its rank, but its shape along each of those axes
is unknown. Other examples are the results of database queries, the size of a
document in a text editor, and the on-going trading history of a stock market
instrument.

Many array language functions accept array arguments of arbitrary rank or
shape. These arrays are of class AUD : Arrays of Unknown Dimension.

Thus, we see that array shape classes comprise a hierarchy which orders
arrays by decreasing degrees of static knowledge about their structure and value:
AKV, AKV, AKS, AKD, and AUD.

1A length error is signaled when array shape conformability requirements are violated, such
as attempting to add a two-element list to a three-element list. An index error is signaled
when an array index lies outside the bounds of the index set of the array being indexed.
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2.1 Array Shape Classes and Performance

Arrays of class AKS are useful in situations where problems are of �xed size.
Arrays of class AKD, with statically known rank, but unknown shape, dominate
the application space in other areas where problem sizes change frequently. Ar-
rays of class AUD are less common in applications, even though array language
semantics encourage writing programs in a general, rank-independent manner
that tends to produce AUD arrays. They tend to appear in standard libraries
of utility functions, where their added utility simpli�es the library holdings and
provides substantial bene�ts to the users of those libraries. For example, a single
function might support searches of vectors, matrices, and tensors, rather than
requiring the library to contain a whole family of rank-speci�c functions. Some
compilers, speci�cally sac2c, generate rank-speci�c (AKD) or shape-speci�c
(AKS) versions of AUD functions when they are used in an application, so the
AUD code may have vanished by the time compiler optimizations are applied.

As one might expect, the performance of applications written using di�erent
classes of arrays generally degrades as the amount of information available about
the arrays themselves decreases, because fewer compiler optimizations and sim-
pli�cations can be used. Optimization of AKS array-based code is fairly well
understood; compilers for Fortran, SAC, and SISAL generate highly e�cient
code on such arrays. Unfortunately, despite the popularity of the AKD style of
array programming, AKD-based performance is usually signi�cantly worse than
that of AKS, because many optimizations either do not, or can not, operate on
AKD arrays. When AUD arrays do manage to survive in generated code, per-
formance is generally even worse than that of applications using AKS or AKD
arrays, because array rank and shape information usually must be maintained
during execution.

Since many problems do not lend themselves to AKS-based solutions, better
optimizations for non-AKS arrays could bene�t application programmers. One
way to improve those optimizations is to provide them with more semantic
knowledge about the shapes of the arrays on which they operate.

3 Array Shape Analysis

Array languages generally perform run-time array shape checking to ensure
that language semantics are not violated. For example, element-wise addition
of a two-element vector to a three-element vector is forbidden. Compiler-driven
removal of such run-time checks, when feasible, may have an impact on run-time
performance that is all out of proportion to the number of such checks that are
eliminated, due to their enabling e�ect on optimizations by a compiler. For
instance, compositions of scalar functions should always be amenable to loop
fusion and array contraction. Yet, the SISAL compiler does not perform loop
fusion if array bounds do not match, or if run-time checks are present near those
loops.

Similarly, the SAC compiler restricted several powerful optimizations, such
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as Index Vector Elimination [10] and With Loop Folding [3], to operate only on
AKS arrays, even though non-AKS array operations could bene�t from them.
We found that extending those optimizations to some AKD and AUD arrays
was fairly easy, despite the absence of precise knowledge of array shapes.

The key insight was recognition that many optimizations do not need precise
knowledge of array shapes. Rather, all they require is knowledge that the array
shapes are identical : if array shapes match, then the optimizations can be
applied. Thus, the problem becomes one of inferring that two arrays that are
candidates for optimization do, indeed, have the same shape.

The shape-preserving semantics of some array language primitives o�er a
way to determine that two arrays must be the same shape. In real applications,
arrays do not arise out of thin air. Rather, they are usually formed through
application of functions to other arrays, the new arrays often taking their shape
from the shapes of one or more of the arrays that were arguments to those
functions. Typical shape-preserving operations are assignment and its cousin,
the PHI function of Static Single Assignment, monadic scalar functions, such as
signum, dyadic scalar functions where one argument is scalar, such as addition,
and structural functions, such as rotate and reverse.

These shape-preserving functions comprise a subset of the functions that are
most amenable to this sort of analysis { the uniform functions [11]. whose result
shape is a function only of their argument shape(s) { argument values play no
part in determining the shape of the result.

4 Shape Cliques and Shape Clique Inference

The fact that the shapes of several arrays created by an application are often
identical will not come as a surprise to anyone who is familiar with array lan-
guages. Set theory provides a simple way to organize those array shapes in a
suitable form for use by a compiler: we break the set of arrays created by the
application into subsets, each containing arrays that are known to be of the
same shape, even if we do not know their exact shape. We denote these subsets
as shape cliques.

We determine these subsets by placing each array in an application into
its own set, forming one-element shape cliques.2 Then, we examine the appli-
cation, perhaps by walking its abstract syntax tree using standard data-ow-
analysis methods, to �nd shape-preserving functions, assignments, and other
places where result array shapes can be determined to be the same shape as
the shapes of one or more of the function arguments. For any such functions,
we perform a set union of the shape cliques of the appropriate argument(s) and
results. The representation chosen for shape cliques is unimportant, as long as
it facilitates rapid set membership and set union operations. When this shape

2By each array in an application, we mean each point in the program where an array
obtains a value. In a tuple-based Static Single Assignment (SSA) representation [12] of an
application, these points comprise all left-hand sides.
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clique inference (SCI) process is completed, every array in the application will
belong to a shape clique, each of which will contain at least one member.

Shape clique inference is inexact: if two arrays are in the same shape clique,
then they are of the same shape. However, arrays in di�erent shape cliques may,
nonetheless, be the same shape, despite the fact that the inference process was
unable to determine that they have matching shapes.

4.1 Simple SCI Example

We now present a brief example of how SCI works in the abstract, by analysing
a fragment of an acoustic signal-processing program, written in a SAC-like lan-
guage:

S = SIG+0.01;

Z = (S+1)*(S-rotate(-1,S));

We �rst transform the program into an Abstract Syntax Tree (AST) in tuple
form, with one operation per line. We also initialize each shape clique to in-
dicate which arrays have shapes in common, indicated by array names within
parentheses. For simplicity, this examples ignores scalars:

S=SIG+0.01;

T1=rotate(-1,S);

T2=S-T1;

T3=S+1;

Z=T3*T2;

Cliques: (SIG), (S), (T1), (T2), (T3), (Z)

Next, we walk the abstract syntax tree, performing shape inference at each step.
Element-wise array addition "S=SIG+0.01;" produces a result of the same shape
as its non-scalar argument. Hence, we can place S and SIG in the same shape
clique. The same type of inference on "T3=S+1;" places T3 and S in the same
shape clique:

Cliques: (SIG, S, T3), (T1), (T2), (Z)

Turning to the statement "T1=rotate(-1,S)", we note that rotate produces
a result of the same shape as its second argument, so T1 and S must lie in the
same shape clique:

Cliques: (SIG, S, T3, T1), (T2), (Z)

The statement "T2=S-T1;" is a vector-vector operation. Arrays S and T1 are
already known to be the same shape, because they are members of the same
shape clique, so we can make two inferences: �rst, we know that the result, T2,
must lie in the same clique as the function arguments; second, we can elide the
run-time conformability check for subtract because we have already determined
that the array shapes will always match. The resulting shape cliques are now:

Cliques: (SIG, S, T3, T1, T2), (Z)
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Finally, analysis of the statement "Z=T3*T2;" operates as in the previous step:
Since the arguments to the multiplication operation are in the same shape clique,
the result must be in the same clique, too:

Cliques: (SIG, S, T3, T1, T2, Z)

In this simple example, chosen for reasons of space, we ended up with all
arrays in the same shape clique, and no iteration over the AST was required.
Neither of these situations are likely to occur in practice, of course, due to
array shapes really being di�erent, because the semantics of the language and
application do not give us adequate information to make stronger inferences, and
because the presence of loop-carried variables may require several iterations to
reach a �x-point.

5 Shape Clique Inference in APEX

Clearly, SCI is quite straight-forward (design and implementation of the APEX
SCI code and using SCI data in an optimization took less than a day). A
SAC-like model of the algorithm is shown in Figure 1.

We represent the AST for the program being compiled as an matrix of tu-
ples, each containing a reference to a primitive or non-primitive function, its
arguments and results, and metadata about the function. The AST is in SSA
form, so each array created by the program has a unique name. Each tuple
belongs to a speci�c shape clique, uniquely identi�ed by the row index into the
AST of the �rst member of that clique to appear in the AST. This representation
permits optimizers to make unit-time determination of two arrays being in the
same shape clique, at the cost of more work during SCI set union operations.

The SCI algorithm is integrated into the compiler's existing dataow analysis
(DFA) phase. Dataow analysis iterates over the AST until types, ranks, and
shape cliques reach a �x-point. Other useful data, such as shape, value, and
array predicates are gathered at the same time, but they do not enter into the
�x-point decision.

The UnionShapeClique function computes the union of two shape cliques,
and updates the AST appropriately, with the new shape clique identi�er, arbi-
trarily chosen as the minimum clique member index into the AST:

Loops and conditionals are handled by DFA in the SSA PHI functions; user-
de�ned functions are each treated independently, after which shape clique in-
formation is exchanged between caller and callee functions by the normal inter-
procedural dataow mechanism in the compiler. Helper variables identify ele-
ments of each AST tuple: astfunction is the function being applied by this
tuple; astcliqueid is the identi�er for this tuple's shape clique; astlarg and
astrarg are the left and right arguments, respectively, for the tuple's function.

5.1 APEX SCI Termination

Dataow analysis terminates when the AST ceases to change. For purposes of
SCI, this occurs when no more elements are being added to any shape clique.
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do f
/* For purposes of exposition, the algorithm

* is shown as a sequential loop. The APEX

* implementation uses FORALLs across each switch type.

*/

for(row=0; row<ASTrows; row++) f
oldast = AST;

switch( AST[row; astfunction]) f
case Assignment:

case MonadicShapePreservingFunction:

case DyadicSxAShapePreservingFunction:

arg = AST[row; astrarg];

AST = UnionShapeClique( AST, row, arg);

case DyadicAxSShapePreservingFunction:

arg = AST[row; astlarg];

AST = UnionShapeClique( AST, row, arg);

case SSAPHI:

/* SSA PHI is limited here to two arguments,

* but in general, all PHI arguments must be in

* the same shape clique for the union to occur

*/

case DyadicAxAShapePreservingFunction:

if( AST[row; astlarg] == AST[row; astrarg]) f
arg = AST[row; astlarg];

AST = UnionShapeClique( AST, row, arg);

g
g
endswitch;

g until match(AST, oldast);

g
g

int[.,.] UnionShapeClique( int[.,.] AST, int row, int arg)

f
newid = min(AST[row; astcliqueid], arg);

if (newid == arg)

deadcliqueid = AST[row; astcliqueid];

else

deadcliqueid = newid;

AST[row; astcliqueid] = newid;

/* Renumber soon-to-be-gone clique */

for(i=0; i<ASTrows; i++) f
if( AST[i; astcliqueid] == deadcliqueid) f
AST[i;astcliqueid] = newid;

g
return(AST);

g

Figure 1: Shape Clique Inference Algorithm7



Since the only modi�cation performed on the AST shape cliques are set unions,
cliques can not shrink in size; they can only grow (through union with another
clique) or disappear into another clique.

The AST comprises a �nite number of tuples, each of which can belong to
only one shape clique, so the algorithm must terminate within a number of set
union operations that is smaller than the number of tuples in the AST.

5.2 Inter-procedural SCI in APEX

Initially, APEX SCI performed intra-procedural shape clique inference, but we
extended it to inter-procedural inference (an hour or so of e�ort) when we found
that it produced superior results in the presence of APL function composition
(in the absence of inlining). To see why this is so, consider a SAC identity
function, ID, whose result is its argument. The assignment:

A = B;

would place A and B in the same shape clique. However, the assignment:

A = ID(B);

would not, because the ID function call hides the shape of the right argument of
=. We altered the shape clique identi�er to handle inter-procedural array iden-
ti�cation by the simple expedient of making the shape clique identi�er comprise
a function identi�er and the AST row index.

The SAC SCI implementation, discussed in Section 6, uses intra-procedural
analysis, partly due to the architecture of the SAC compiler, and partly because
inlining of application code makes the problem, in practice, largely a non-issue,
as our performance results, below, will show.

5.3 Run-time Check Removal

In order to measure the quality of shape clique inference, we used shape clique
information to extend the APEX compiler's run-time-check optimization. The
compiler emits conformability checks for each dyadic scalar function invoca-
tion, unless some static knowledge of the speci�c function invocation permits
elision of the check. For example, the presence of certain array predicates [13],
scalar extension of one argument, or statically known matching argument array
shapes (AKS) enable such elision. The run-time-check optimization removes,
when possible, dyadic scalar function conformability (length error) checks from
APEX-generated code.

We extended the APEX compiler so that it also elides these checks when
both function arguments are members of the same shape clique. In addition, we
generated diagnostic comments, to facilitate counting the number of eliminated
checks and identifying the cause(s) of their elimination.
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5.4 Run-time Check Removal Performance

We evaluated the performance of our SCI tool and extended optimizer by run-
ning the APEX compiler against 156 performance benchmarks, then counting
the number of run-time dyadic scalar function conformability checks that were
eliminated by exploiting shape clique information:

Type of check # of checks Percentage
Total# of dyadic scalar calls 1251 100%
Removed by SCI analysis 86 6.9%
Removed by scalar detection & 55 4.4%
SCI analysis
Removed by scalar detection 853 68.2%
Remaining run-time checks 257 20.5%

Shape clique analysis permitted removal of 6.9% of the original run-time checks,
or about 25% of those checks remaining after other removal tools had done
their job. Shape clique analysis also found 55 sites where scalar detection had
redundantly removed the same check.

We were unable to measure the performance impact of this optimization
directly, because the SISAL back end of APEX was not operational at the time.
However, performance gains resulting from loop fusion and array contraction are
usually substantial. Such gains would occur wherever run-time conformability
checks were removed, if the fused operations were on reasonably large arrays.

As we expected, shape clique analysis missed some scalar-scalar or scalar-
non-scalar cases that were detected by APEX's extant data ow analyzer, so
shape clique analysis is not a complete replacement for other inference tools.

6 Extended Index Vector Elimination in SAC

The SAC with-loop permits rank-independent speci�cation of data-parallel loop
nests. Each N-element index vector generated by a with-loop is an accessor
to an element or sub-array element of an array. Index vectors are useful from
the standpoint of algorithmic expression, but their presence in compiled code
degrades performance, so the SAC compiler Index Vector Elimination (IVE)
optimization [10] attempts to remove them, replacing them by array o�sets or
by shared index operations.

Originally, the SAC compiler performed IVE only on AKS arrays. Our
APEX benchmarks, mostly AKD in nature, produced unexpectedly high exe-
cution times under SAC, and we suspected that IVE was a culprit in that poor
performance. Encouraged by the results obtained with the APEX implementa-
tion, and by a suggestion from Sven-Bodo Scholz, we decided to implement SCI
in the sac2c compiler, using its inferences to extend IVE to operate on some
AKD and AUD arrays. We knew that AKD and AUD performance would be
poorer than than obtained on AKS arrays, due to fewer opportunities to per-
form constant folding and constant propagation, but were pleased by the results
of our work. The author and Stephan Herhut performed that implementation in
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June 2006, then conducted experiments to measure the performance of compiled
SAC code with, and without, the bene�t of SCI-assisted IVE.

6.1 Experimental Framework

We conducted our tests on an AMD-based platform (Opteron 165 (1.8GHz))
equipped with 4GB of RAM, running SuSE Linux 10.1 64-bit. We used the
current sac2c compiler (rev 15076) with the GNU gcc compiler version 4.1.0
as the back-end compiler. We enabled standard sac2c optimizations, compiling
the resulting C code with the -O3 option of gcc. We modi�ed the SAC compiler
so that we could operate it with SCI enabled or disabled, to simplify timing tests.

Our tests were chosen from a set of SAC numerical AKS benchmarks, and
from a set of APEX-generated AKD benchmarks, modi�ed to give us AKD-
and AKS-based versions. The benchmarks, summarized in Figure 2, are vector-
based (rank-1), unless speci�cally noted as 2-D (rank-2 matrix) or 3-D (rank-3
tensor).

We ran each benchmark �ve times, discarding the highest CPU time of those
runs, to mitigate the e�ects of dynamic linking overhead. We used the Linux
/usr/bin/time command to measure CPU (USER) time.

6.2 Experimental Results

Figure 3 and Figure 4 show the speedup in CPU time for each benchmark
with SCI enabled and disabled. All execution times are scaled so that the IVE-
disabled times correspond to a Y-axis value of 1. The black (lowest) bars indicate
the speedup obtained, relative to IVE disabled, with IVE enabled and SCI
disabled; the yellow bars stacked on top of those show the additional speedup
obtained when both SCI and IVE are enabled.
The performance of IVE with and without SCI enabled is quite variable. In
about a third of the AKS cases (e.g., ipape, lltop), SCI is unable to improve
performance. In all but a few of the AKD benchmarks (e.g., pde1), enabling
SCI improves performance, typically between a factor of 2-4X, but occasionally
well in excess of that, as in the case of relax fixAKD, which ran about 14X
faster. We suspect that the unrelated changes in sac2c impeded IVE operation
onf pde1, but have not had the luxury of time to investigate this problem.
Surprisingly, in a few AKS cases (e.g., scs, rle, sdyn4, APLtomcatv), enabling
SCI produces a good improvement in performance.

The range of speedup is heavily inuenced by the particular coding style
used in the benchmark. For example, although the APLtomcatv benchmark has
AKS arguments, the style of the SAC code results in a number of AKD arrays
being created. SCI allowed IVE to eliminate all but three of the 114 sel (array
selection operations using index vectors as an argument) operations left by the
SCI-disabled IVE, contributing to its improved performance.
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Benchmark name Description

APLlogd1 hand-coded SAC acoustic signal processing)
APLtomcatv 2-D SPEC tomcatv, APEX-generated, hand-tuned
downgradePV downgrade of permutation vector
dtb2 drop trailing blanks from 2-D character matrix
histlp histogram written as loop
histop histogram written as outer product
ipape inner product on 2-D character matrices
ipbb inner product on 2-D Boolean matrices
ipbd inner product on 2-D Boolean-Double matrices
ipdd inner product on 2-D Double-Double matrices
lltop linked-list to permutation vector
logd2 acoustic signal processing
loopis simple integer scalar loop
matmul inner product on 2-D Double-Double matrices
mconv one-dimensional convolution
nmo 2-D geophysics normal move-out calculation
nthone �nd nth one in Boolean vector
pde1 3-D Red-Black Poisson solver
primes prime number �nder
relax �x rotate 2-D relaxation model
relax �x 2-D relaxation model
rle run-length encoding
schedr J.L. Ryan solution to Roger Hui scheduler problem
scs 2-D string shu�e problem
sdyn4 2-D dynamic programming
tjkc 2-D �nancial market Julian calendar
unirand random-number generator
upgradeBool upgrade Boolean vector
waver 3-D water wave motion model

Figure 2: Benchmark characteristics

7 Other Applications of Shape Clique Inference

We have presented some of the optimizations that can be performed with shape
clique inference information, but it may be useful to note a few other potential
applications for SCI inferences

In SAC, shape clique inference could be used to extend with-loop folding
[14] to some AKD and AUD arrays.

Shape clique information can reduce the number of run-time index-error
checks that have to be performed in an application. Consider one possible
scenario that would be facilitated by use of SCI information, as in this SAC
example, where we assign the values in the list V3 to the �rst shape(V2) elements
of a third vector, V1.
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Figure 3: Performance of IVE with and without SCI

V1 = iota([10]);

V2 = [2,4,6,8,9];

V3 = [10,20,30,40,50];

Z = with(0*shape(V2) <= iv < shape(V2))

modarray(V1, V2[iv], V3[iv]);

Normally, this operation would require two run-time checks: First, an index
error check, to ensure that the appropriate elements of V2 are all non-negative,
but less than shape(V1). Array predicates [13] could be used to determine that
V2 is an Arithmetic Progression Vector (or subset thereof). In that case, this
run-time check of all index array elements could be replaced by a single shape
check:

shape(V2) <= shape(V1)

Moreover, if V1 and V2 are in the same shape clique, then that error check can
also be elided.

The second run-time check is a length-error check, to ensure that the shape
of V3 is no less than the shape of V2:

shape(V3) >= shape(V2)

Similarly, if V1 and V3 are in the same shape clique, and the length-error check
has been performed or proved nugatory, then this run-time index-error check is
also nugatory.
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Figure 4: Performance of IVE with and without SCI

8 Guarded Shape Cliques

The semantics of some array languages require that all non-scalar arguments to
dyadic scalar functions must match in shape. So, it is perhaps surprising that
the APEX SCI tool does not infer anything about dyadic scalar function calls
with non-scalar arguments, except when the arguments are already known to
be members of the same shape clique. It is problematic to do better than this.
Consider a SAC statement such as:

B = [2, 3];

C = [4, 5, 6];

Z = B + C;

One would think that, since non-scalar arrays B and C must match in shape, and
since the shape of Z will match the shape of its arguments, all three arrays should
belong to the same shape clique. However, that is true only after the operation,
including a length error check to enforce the semantics of element-wise array
addition, successfully completes.

Contemplate what would happen if shape clique inference blindly placed
all three arrays into the same shape clique: code generation would generate,
erroneously, array addition code that did not include the requisite length error
check, based on the claim made earlier by shape clique inference, that B and
C were in the same shape clique. This could cause the program to crash or
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produce incorrect answers.
Hence, we must not blindly place these arrays in the same shape clique. Is

all lost, or can we rescue some information from the semantics of array addi-
tion? With some e�ort, and the power of Static Single Assignment (SSA), we
can indeed get useful information from the array-array addition operation. We
proceed by rewriting the program slightly, replacing the original text:

Z = B + C;

by this:

A',B' = Guard( A, B);

Z = B' + C';

and replacing all references to A and B that are dominated by Guard by references
to A' and B'. The use of SSA makes the latter a simple operation.

This change decouples references to A and B from operations that are dom-
inated by Guard, and it eliminates the need for us to consider operations that
are not dominated by Guard. We are now left with a new function Guard, with
the following de�nition, assuming that A and B are integer arrays:

int[+] int[+] Guard( int[+] A, int[+] B)

f if ( !all(shape( A) == shape( B))) f
print( tochar("length error on A, B"));

exit(666);

g
else return (A, B);

g

That is, if the shapes of A and B match, Guard merely returns its arguments,
unchanged. If the shapes do not match, a run-time error is raised.

Although it appears that Guard merely separates the length-error check on
A and B from the code that adds those arrays, we have introduced new arrays
(A', B', and Z), all of which are in the same shape clique, because the Guard

operation ensures that to be the case: the execution of Guard may complete,
because the shapes of A and B match, in which case any later code generated on
that assumption will execute problem-free, because it is dominated by Guard.
If the execution of Guard fails, because the array shapes do not match, an error
will be raised, so the potentially erroneous code that follows Guard is never
executed. Meanwhile, SCI can proceed in the knowledge that arrays A', B',
and Z are in the same shape clique.

At least two problems remain here: �rst, what about references to A and B

outside the dominator tree of Guard? Second, what if a later inference by SCI
determines that A and B are, in fact, in the same shape clique? The �rst problem
may be solved when SCI examines other parts of the application; the second
problem is solvable as follows: if a later stage of SCI was to discover that, for
instance, A and B' are, in fact, in the same clique, then the code generator could
eliminate Guard calls that involve those two arrays, by replacing the names of
the arrays in all expressions of the form shape(X) with the name of the typical
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member of the shape clique to which X belongs. The particular member of the
shape clique denoted as typical is unimportant, as long as it is always the same
member. Thus, if the typical member of the shape clique for A and A' was TYP,
the shape comparison in Guard would turned into:

if ( !all(shape( TYP) == shape( TYP)))

Common subexpression elimination, constant folding, and other standard op-
timizations would trivially remove this instance of Guard from the generated
code.

9 Related Work

Shape cliques represent a subset of a more general topic in array languages -
array shape analysis. The FISh language [15] deduces array shapes for entire
applications, but it only works in an AKS environment, supports only uniform
functions, and it segregates values from shapes, which limits its utility to some
degree. The IBM pHPF research compiler:

. . . performs symbolic analysis to generate e�cient code in the
presence of statically unknown parameters like the number of pro-
cessors and array sizes [16].

Unfortunately, their paper does not o�er speci�cs about array shape analysis.
The PARADIGM compiler for MATLAB [17], like FISh, has to be able to deduce
statically all array shapes in a program.

Trojahner, et al., recently implemented an elegant method of symbolic shape
analysis (SAA) for SAC [18], which should be able to provide superior informa-
tion to that provided by SCI. Nonetheless, the utter simplicity of SCI and the
signi�cant performance improvements it o�ers may give it a continued role in
array language optimizations.

10 Future Work

We intend to continue investigation of some of the optimizations and run-time
error removal work mentioned earlier, and are also investigating other methods
for improving the quality of shape clique inference, including Guarded Shape

Cliques. We also plan to investigate optimizations on arrays whose shapes are
only partially known (e.g., a matrix with two columns, but an unknown number
of rows), as well as on arrays with known relative shape characteristics (e.g.,
one array has fewer rows than another, but the same number of columns).

Our APEX implementation supported run-time check removal only for the
dyadic scalar functions; there are opportunitities to extend run-time check re-
moval to other families of functions.

Although the concept of shape cliques o�ers substantial performance im-
provement for non-AKS problems, the cost of SCI is excessive: it does too much
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work, examining all arrays in an application, even though optimizers are likely
only interested in the shape properties of a few of those arrays. In this regard,
other shape-analysis techniques should be able to provide equivalent information
with less e�ort.

11 Summary

We have introduced shape cliques, a concept for discussing equivalent array
shapes, showed a simple method for organizing the arrays in an application
into sets of identical array shapes, and demonstrated a shape clique inference
algorithm for inferring membership in those shape cliques.

We also showed that SCI allowed removal of 25% of the dyadic scalar function
run-time checks remaining in compiled APL after other removal optimizations.

Finally, we showed that SCI can provide information to extend the capability
of Index Vector Elimination to operate on AKD and AUD arrays, resulting in
performance improvements of up to 14X.
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