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Abstract. Sac (Single Assignment C) is a strict, purely functional pro-

gramming language primarily designed with numerical applications in

mind. Particular emphasis is on e�cient support for arrays both in terms

of language expressiveness and in terms of runtime performance. Array

operations in Sac are based on elementwise speci�cations using so-called

With-loops. These language constructs are also well-suited for concur-

rent execution on multiprocessor systems.

This paper outlines an implicit approach to compile Sac programs for

multi-threaded execution on shared memory architectures. Besides the

basic compilation scheme, a brief overview of the runtime system is given.

Finally, preliminary performance �gures demonstrate that this approach

is well-suited to achieve almost linear speedups.

1 Introduction

Sac (Single AssignmentC) is a strict, �rst-order, purely functional programming

language primarily designed with numerical applications in mind. Particular em-

phasis is on e�cient support for array processing. E�ciency concerns are essen-

tially twofold. On the one hand, SAC o�ers the opportunity of de�ning array

operations on a high level of abstraction, including dimension-invariant program

speci�cations which generally improves productivity in program development.

On the other hand, sophisticated compilation schemes ensure e�ciency in pro-

gram execution. Extensive performance evaluations on a single though important

kernel application (3-dimensional multigrid relaxation from the Nas benchmark

[5]) show that Sac clearly outperforms its functional rival Sisal[17] both in

terms of memory consumption and in terms of wallclock execution times[23].

Even the Fortran reference implementation of this benchmark is outperformed

by about 10% with respect to execution times.

Although numerical computations represent just one application domain, cer-

tainly, this is a very important one with many applications in computational sci-

ences. In these �elds, the runtime performance of programs is the most crucial

issue. However, numerical applications are often well-suited for non-sequential

program execution. On the one hand, underlying algorithms expose a consider-

able amount of concurrency; on the other hand, the computational complexity



can be scaled easily with the computational power available. So, multiprocessor

systems allow substantial reductions of application runtimes, and, consequently,

computational sciences represent a major �eld of application for parallel pro-

cessing. Therefore, su�cient support for concurrent program execution is par-

ticularly important for a language like Sac.

Due to the Church-Rosser-Property, purely functional languages are often

considered well-suited for implicit non-sequential program execution, i.e., the

language implementation is solely responsible for exploiting concurrency in mul-

tiprocessor environments. However, it turns out that determining where con-

current execution actually outweighs the administrative overhead in
icted by

communication and synchronization is nearly as di�cult as detecting where con-

current program execution is possible in imperative languages [25]. Many high-

level features found in popular functional languages like Haskell or Clean,

e.g. higher-order functions, polymorphism, or lazy evaluation, make the neces-

sary program analysis even harder.

As a consequence, recent developments are often in favour of explicit solu-

tions for exploiting concurrency. Special language constructs allow application

programmers to specify explicitly how programs are to be executed on multi-

ple processors. Many di�erent approaches have been proposed that reach from

simple parallel map operations to full process management capabilities and even

pure coordination languages [26, 19, 4, 9, 12, 16]. Although the actual degree of

control varies signi�cantly, explicit solutions have in common that, in the end,

application programmers themselves are responsible for the e�cient utilization of

multiprocessor facilities. Programs have to be designed speci�cally for the execu-

tion in multiprocessor environments and, depending on the level of abstraction,

possibly even for particular architectures or concrete machine con�gurations.

However, typical Sac applications spend most of their execution time in array

operations. In contrast to load distribution on the level of function applications,

elementwise de�ned array operations are a source of concurrency that is rather

well-suited for implicit exploitation, as an array's size and structure can usually

be determined in advance, often even at compile time. This allows for e�ective

load distribution and balancing schemes. Implicit solutions for parallel program

execution o�er well-known advantages: being not polluted with explicit speci�-

cations, a program's source code is usually shorter, more concise, and easier to

read and understand. Also, programming productivity is generally higher since

no characteristics of potential target machines have to be taken into account

which also improves program portability. Functional languages like Sisal[17],

Nesl[6], or Id[3], have already demonstrated that, following the so-called data

parallel approach, good speedups may well be achieved without explicit speci�-

cations [11, 7, 13].

Successfully reducing application runtimes through non-sequential program

execution makes it necessary to consider at least basic design characteristics of

intended target hardware architectures. Having a look at recent developments

in this area, two trends can be identi�ed. Up to a modest number of processing

facilities (usually � 32) symmetric shared memory multiprocessors dominate. If



a decidedly larger number of processing sites is to be used, the trend is towards

networks of entire workstations or even personal computers. Both approaches are

characterized by reusing standard components for high performance computing

which not only is more cost-e�ective than traditional supercomputers but also

bene�ts from an apparently higher annual performance increase.

In our current approach for Sac, we focus on shared memory multiproces-

sors. Machines like the Sun Ultra Enterprise Series, the HP 3000/9000 series, or

the SGI Origin have become wide-spread as workgroup or enterprise servers and

already dominate the lower part of the Top500 list of the most powerful com-

puting facilities worldwide [10]. Although their scalability is conceptually limited

by the memory bottleneck, processor private hierarchies of fast and su�ciently

large caches help to minimize contention on the main memory. Theoretical con-

siderations like Amdahl's law [2], however, show that an application itself may

be limited with respect to scalability anyway. Our current approach may also

serve as a �rst step to be integrated into a more comprehensive solution covering

networks of shared memory multiprocessors in the future.

As a low-level programming model, multi-threading just seems to be tailor-

made for shared memory architectures. It allows for di�erent (sequential) threads

of control within the single address space of a process. Each thread has its

private execution stack, but all threads share access to the same global data.

This programming model exactly coincides with the hardware architecture of

shared memory multiprocessors which is characterized by multiple execution

facilities but uniform storage. To ensure portability between di�erent concrete

machines within the basic architectural model, the current implementation is

based on Posix-Threads[18] as the major standard.

The rest of the paper is organized as follows: after a short introduction to Sac

in Section 2, the basic concepts of our shared memory multiprocessor implemen-

tation are outlined in Section 3. Preliminary performance �gures are presented

in Section 4. Finally, Section 5 draws conclusions and discusses future work.

2 SAC | Single Assignment C

This section is to give a very brief overview of Sac. A more detailed introduction

to the language may be found in [21, 24]; its strict, purely functional semantics

is formally de�ned in [20].

The core language of Sac may be considered a functional subset of C, rul-

ing out global variables and pointers to keep the language free of side e�ects.

It is extended by the introduction of arrays as �rst class objects. An array is

represented by two vectors: a data vector which contains the elements of the ar-

ray, and a shape vector which provides structural information. The length of the

shape vector speci�es the dimensionality of the array whereas its elements de�ne

the array's extension in each dimension. Built-in functions allow to determine

an array's dimension or shape and to extract array elements.

Complex array operations may be speci�ed by means of so-called With-

loops, a versatile language construct similar to the array comprehensions of



Haskell or Clean and to the For-loops of Sisal. It allows the dimension-

invariant, elementwise de�nition of operations on entire arrays as well as on

subarrays selected through index ranges or strides.

WithExpr ) with ( Generator ) Operation

Generator ) Expr Relop Identifier Relop Expr [ Filter ]

Relop ) < j <=

Filter ) step Expr [ width Expr ]

Operation ) genarray ( Expr ; Expr )

j modarray ( Expr ; Expr ; Expr )

j fold ( FoldFun ; Expr ; Expr )

Fig. 1. The syntax of With-loops.

The syntax ofWith-loops is outlined in Fig. 1. AWith-loop consists of two

parts: a generator part and an operation part. The generator part de�nes a set

of index vectors along with an index variable representing elements of this set.

Two expressions that must evaluate to vectors of equal length, de�ne the lower

and the upper bounds of a range of index vectors. This continuous range may

be restricted by a �lter which de�nes strides of arbitrary widths. For instance,

with a, b, s, and w denoting expressions that evaluate to vectors of length n,

( a <= i vec < b step s width w ) speci�es the set of index vectors
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The operation part speci�es the operation to be performed on each element of

the index vector set de�ned by the generator. Three di�erent operation parts ex-

ist. Let shp and idx denote Sac-expressions that evaluate to vectors, let array

denote a Sac-expression that evaluates to an array, and let expr denote an

arbitrary Sac-expression. Moreover, let fold op be the name of a binary com-

mutative and associative function with neutral element neutral. Then

{ genarray( shp, expr) generates an array of shape shp whose elements are

the values of expr for all index vectors from the speci�ed set, and 0 otherwise;

{ modarray( array, idx, expr) de�nes an array of shape shape(array)whose

elements are the values of expr for all index vectors from the speci�ed set,

and the values of array[idx] at all other index positions;

{ fold( fold op, neutral, expr) allows the speci�cation of reduction oper-

ations. Setting out with neutral, for each index vector from the speci�ed set

the value of expr is folded using fold op.

The expressive power of the With-loop allows the speci�cation of a com-

prehensive array library for Sac in the language itself. This library provides

numerous dimension and shape independent high-level array operations similar



to those available inApl[15] or Fortran-90[1] as intrinsic functions, e.g. exten-

sions of binary scalar operations to combinations of scalars and arrays as well

as to arrays of equal shape by elementwise application, various types of sub-

array selection, concatenation of arrays along given axes, shifting and rotating

arrays, or the reduction operations sum, product, any, and all. Since this library

can easily be extended by any application programmer, Sac allows high-level

programming without the restriction of a �xed set of built-in operations.

3 Implementation aspects

This section introduces the basic concepts of extending the Sac compiler in order

to generate multi-threaded target code based on Posix-Threads. This thread

API provides operations to dynamically create new threads and to synchronize

them upon termination. As threads communicate with each other by means

of global data, various synchronization primitives are available to ensure data

integrity in the presence of simultaneous accesses by di�erent threads. While on

a uniprocessor, these are simply executed in a time-sharing mode, on a shared

memory multiprocessor, the operating system scheduler may assign them to

di�erent processors for simultaneous execution. Thread scheduling is performed

implicitly by the operating system; there is no means to explicitly assign threads

to speci�c processors for execution.

For reasons already pointed out, concurrency in Sac program speci�cations

is not to be exploited on the level of function applications but within elementwise

de�ned array operations. Here, the design of arrays in Sac pays o�. Since all

high-level array operations are implemented byWith-loops in Sac itself, we can

focus entirely on this single though powerful language construct. Consequently,

without any extra e�ort, the operations provided by the Sac array library bene�t

from multi-threaded execution just as any user-de�ned array operation.

A = with ( lb <= iv < ub step s width w )

genarray( shp, e );

...

B = with ( lb <= iv < ub step s width w )

modarray( A, iv, A[iv] + 1);

...

c = with ( lb <= iv < ub step s width w )

fold( foldfun, neutral, B[iv]);

Fig. 2. Sac code example.

The compilationofWith-loops into multi-threaded (imperative) pseudo code

is outlined by means of a small example. The Sac code fragment in Fig. 2

features all three variants of the With-loop as introduced in Section 2. The

variables lb, ub, s, and w that make up the generator parts as well as shp are

assumed to be de�ned before the statements shown and to evaluate to vectors



of equal length. For reasons of simplicity, the same variable names are used in

all three generator parts, however, their actual values may be di�erent. First,

an array A of shape shp is generated by means of a genarray-With-loop. The

variable e is also assumed to be de�ned before and to evaluate to a scalar, say

int. Next, a modarray-With-loop de�nes an array B identical to A except for

the elements selected by the generator, which are incremented by 1. Finally, a

fold-With-loop is used to fold selected elements of array B by the operation

foldfun whose neutral element neutral is assumed to denote a constant.

A = ALLOCATE_ARRAY( shp);

LOOP_NESTING( iv: shape(A), lb, ub, s, w) {

A[iv] = ? e : 0;

}

...

B = ALLOCATE_ARRAY( shape(A));

LOOP_NESTING( iv: shape(B), lb, ub, s, w) {

B[iv] = ? A[i]+1 : A[i];

}

...

c = neutral;

LOOP_NESTING( iv: lb, ub, s, w) {

c = foldfun( c, B[iv]);

}

Fig. 3. Compilation to sequential code

1

.

As a starting point, the compilation of this example code fragment into se-

quential (imperative) pseudo code is outlined in Fig.3. After memory for the tar-

get array is allocated, all its elements are initialized in a nesting of (for-) loops

either with the value of e or with 0. The loop nesting de�nes a complete iteration

of the variable iv on the target array; the concrete design however depends on

lb, ub, s, and w. On this level of abstraction, the genarray and the modarray

variants of the With-loop turn out to be identical, i.e., modarray-With-loops

can be ignored from now on. The implementation of the fold-With-loop is

slightly di�erent. It starts with the initialization of the fold variable c with the

neutral element of the fold operation. The loop nesting lets iv only iterate within

the iteration space actually de�ned by lb, ub, s, and w. In each iteration step,

the value of c is updated by folding its old value with the respective element of

array B.

With this sequential implementation in mind, the basic idea of organizing the

multi-threaded execution of aWith-loop is straightforward. The corresponding

iteration space has to be partioned into several disjoint subspaces, one for each

thread. In the case of the genarray and the modarray variant, each thread then

1

Here A[iv] = ? e : 0; denotes that in di�erent parts of the loop nesting the oper-

ation is either A[iv] = e; or A[iv] = 0;.



simply initializes a disjoint part of the target array. In the case of a fold-With-

loop, each thread computes a partial fold result. Afterwards, these partial results

are again folded to form the overall result.

A = ALLOCATE_ARRAY( shp);

MT_EXECUTION( 0 <= tid < #THREADS) {

do {

sb, se, cont = SCHEDULE( tid, #THREADS, shape(A), lb, ub, s, w);

LOOP_NESTING( iv: sb, se, shape(A), lb, ub, s, w) {

A[iv] = ? e : 0;

}

} while (cont);

}

Fig. 4. Multi-threaded implementation of the genarray-With-loop.

The multi-threaded implementation of the genarray-With-loop of the ex-

ample is outlined in Fig.4. The pseudo statement MT EXECUTION denotes that the

following code block is to be executed concurrently by multiple threads. The ex-

act number of threads is speci�ed by #THREADSwhich is considered a runtime con-

stant. Although each thread executes the same code, threads can identify them-

selves by means of the variable tid whose value in the range [0..#THREADS-1]

is unique for each thread.

In the presence of subranges and strides of di�erent widths in multiple dimen-

sions, the actual nesting of loops can be extremely complicated. An optimiza-

tion called With-loop-folding[22] that allows for condensing several subsequent

With-loops into a single, more powerful variant increases this complexity even

further. For reasons of e�ciency in compiler design, it is therefore highly recom-

mendable to reuse the existing sequential compilation scheme for With-loops

as far as possible. The solution here is to completely separate from the compu-

tation, i.e. from the loop nesting, the decision which thread actually initializes

which array elements. In Fig. 4, this decision-making code is denoted by the

pseudo statement SCHEDULE as this discipline is usually called loop scheduling.

The idea is that the loop scheduler de�nes a rectangular subrange of the

original iteration space covered by the loop nesting, based on the total number

of threads (#THREADS) and the thread ID (tid). This rectangular subspace is

de�ned by the two vectors sb ('schedule begin') and se ('schedule end'). The

original (sequential) loop nesting is only slightly modi�ed in that each loop is

restricted to the intersection between its original range and the iteration sub-

space de�ned by sb and se. Apart from reusing existing compilation schemes,

strictly separating the scheduling from the computation o�ers the additional

advantage that di�erent scheduling strategies may easily be implemented and

tested, and later on the compiler may choose the one which is most appropriate

with respect to the overall array operation. Enclosing the scheduler and the loop

nesting within a (do-) loop allows scheduler implementations that repeatedly

assign di�erent iteration subspaces to one thread. The scheduling code itself de-



cides whether or not a re-scheduling is required and stores this information using

the local variable cont.

The basic organizational concepts of a multi-threaded implementation of

With-loops as outlined in the context of the genarray variant may also be

be applied to modarray- and fold-With-loops in a more or less straightforward

way. Instead of going into more details, we now focus on the aspect of organiz-

ing a whole program with respect to multiple execution threads. This concerns

such issues as where and how to create and terminate additional threads, thread

synchronization, and inter-thread communication.

As a result of the compilation steps described so far, all With-loops from

the original Sac program are replaced by MT EXECUTION blocks. These blocks

exactly indicate the code sections that actually are to be executed concurrently

by multiple threads. This leads straightforwardly to a fork/join execution model

as depicted on the left hand side of Fig. 5. The primary thread of an application

process serves as a master thread (thread ID 0). Upon program startup, the

master thread begins executing the program sequentially. Each time the mas-

ter thread encounters an MT EXECUTION block, it creates #THREADS - 1 so-called

worker threads. Afterwards, the master thread and the worker threads jointly

execute the MT EXECUTION block as described before. Upon completing their com-

putation, worker threads simply terminate. The master thread, however, has to

wait until the last worker thread terminates, and thereupon continues with the

execution of sequential code.

This fork/joinmodel is conceptually simple and may be implemented straight-

forwardly. Synchronization and communication is exactly limited to thread cre-

ation and thread termination; the worker threads do not interact with each other

in any way. However, in a concrete implementation, the performance achieved

by a pure fork/join model turns out to be rather poor. Su�cient speedups may

only be achieved for extremely large problem sizes or with extremely costly op-

erations per element. The reason for this is that although thread creation is

relatively cheap compared to process creation, it is still expensive in terms of

machine instructions. So, creating new worker threads upon each multi-threaded

With-loop-execution and terminating them afterwards is ine�cient.

2

A solution to this problem that combines the conceptual bene�ts of the

fork/join approach with an e�cient execution scheme is graphically outlined

in the centre of Fig. 5. In the enhanced fork/join model, all worker threads are

created exactly once at program startup and do not terminate until the whole

program does so. The necessary synchronization and communication between

the threads is implemented by means of two di�erent types of barriers: each

MT EXECUTION block is enclosed within a start barrier and a stop barrier. After

creation, worker threads immediately stop at a start barrier. This barrier is lifted

when the master thread encounters the �rst MT EXECUTION block. The master

thread and all worker threads activated thereupon share the computation of the

With-loop exactly as in the pure fork/join model. Worker threads which com-

2

On one of our test machines, we measured > 10; 000 clock cycles for creating just

one (kernel) thread.
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Fig. 5. Multi-threaded execution schemes.

plete their individual part of the computation, pass a stop barrier, and, with

nothing else to do, immediately move on to the following start barrier. However,

the master thread has to wait for the last worker thread to reach the stop barrier

before it may proceed with further (sequential) computations.

Two major extensions to the compilation scheme described so far are required

in order to implement this enhanced fork/join execution model. First, a function

has to be speci�ed that is executed by the worker threads upon creation, in the

following called thread control function; second, the code within MT EXECUTION

blocks has to be abstracted out of its original context and lifted to a separate

function de�nition in order to be accessible from the thread control function.

These new functions are named WL-functions.

The thread control function is outlined in Fig. 6. It shows how the worker

threads reach the start barrier immediately after creation. Before the master

thread lifts this barrier, it stores the address of the WL-function to be executed

in the global variable WL FUN ADDR. Upon activation, each worker thread retrieves

this address and executes the respective function with its own unique thread

ID as argument. Afterwards the worker threads stop again at the start barrier

waiting for further activations.



void ThreadControl( int tid)

{

wl_fun_t *wl_fun;

do {

START_BARRIER_WORKER();

wl_fun = WL_FUN_ADDR;

*wl_fun( tid);

} forever;

}

Fig. 6. Thread control function.

If a block of code is to be abstracted out of its original context, it must

�rst be transformed into a combinator. For this purpose, two sets of variables

have to be inferred: the set IN of all variables referenced within the block but

de�ned outside and the set OUT of the variables assigned a value within the

block that is needed outside. To actually generate a new function de�nition, the

set LOC of all identi�ers exclusively used within the block is also required. For

the MT EXECUTION block outlined in Fig.4, these sets can easily be identi�ed as

IN = f A, e, lb, ub, s, wg, OUT = ;, LOC = f iv, sb, se, contg,

and for the fold-With-loop introduced with the initial example in Fig. 2 as

IN = f B, lb, ub, s, wg, OUT = f c g, LOC = f iv, sb, se, contg.

With these sets of identi�ers at hand, it is rather straightforward to construct

a function de�nition and to replace the original code block by the respective

function application. However, in our case, we have to observe that WL-functions

are restricted in their signature since they have to be called from within the

thread control function in a uniform way (see Fig. 6). As a consequence, an

alternative parameter passing mechanism is required. The complete solutions

for the genarray-With-loop of our example is outlined in Figs. 7 and 9.

At the original position of the genarray-With-loop, the MT EXECUTION block

is replaced by code which stores the value of each variable from the correspond-

ing IN set within the global argument frame ARG FRAME (Fig. 9). Afterwards, the

address of the respective WL-function which actually contains the code to be

executed concurrently, is stored in the global variable WL FUN ADDR. The master

thread now activates the worker threads by reaching the start barrier and subse-

quently joins them in executing the With-loop through an ordinary call to the

respective WL-function with its special thread ID 0 as argument.

In the following, all threads execute the same function (WL FUN 1, Fig.7).

This function de�nition has a local declaration for each variable from the corre-

sponding IN, OUT, and LOC sets. Before any computations are done, the values

of the IN variables, i.e. the 'arguments' of the WL-function, are retrieved from

the global argument frame ARG FRAME. The WL-function also contains the stop

barrier. So, after returning from the application of a WL-function, the master

thread may simply proceed with further (sequential) computations (Fig. 9).

Only minor extensions of this scheme are required for fold-With-loops as

depicted in Figs. 8 and 10. The OUT variable c which is used to accumulate



void WL_FUN_1(int tid)

{

int A[] = ARG_FRAME.WL1.A;

int e = ARG_FRAME.WL1.e;

int lb[] = ARG_FRAME.WL1.lb;

...

int iv[], sb[], se[], cont;

do {

...

} while (cont);

STOP_BARRIER(tid);

}

Fig. 7. WL-function: genarray.

int WL_FUN_3(int tid)

{

int B[] = ARG_FRAME.WL3.B;

...

int c, iv[], sb[], se[], cont;

c = neutral;

do {

...

} while (cont);

STOP_BARRIER_F(tid, foldfun, c);

return(c)

}

Fig. 8. WL-function: fold.

A = ALLOCATE_ARRAY( shp);

ARG_FRAME.WL1.A = A;

ARG_FRAME.WL1.e = e;

...

WL_FUN_ADDR = &WL_FUN_1;

START_BARRIER_MASTER();

WL_FUN_1( 0);

Fig. 9. WL-context: genarray.

ARG_FRAME.WL3.B = B;

ARG_FRAME.WL3.lb = lb;

ARG_FRAME.WL3.ub = ub;

...

WL_FUN_ADDR = &WL_FUN_3;

START_BARRIER_MASTER();

c = WL_FUN_3( 0);

Fig. 10. WL-context: fold.

the partial fold result private to each thread is also declared a local variable.

However, a special variant of the stop barrier is required that takes care of

folding the partial results of the various threads, i.e., behind the stop barrier,

c represents the overall fold result which then is simply returned by the WL-

function. The master thread may directly use this value for further computations

while the worker threads just ignore the return value of the WL-function (Fig. 6).

Some issues of particular interest have not been addressed yet: the thread

creation phase and the implementation of start and stop barriers. Since these

represent the administrative overhead of a multi-threaded program, their e�cient

implementation is crucial to achieve good speedups.

In a straightforward implementation of the thread creation phase, the master

thread starts all worker threads one after another by means of a for-loop. As a

consequence, the execution of the actually productive code is delayed by a time

that grows linearly with the number of threads. This delay can easily be reduced

if the worker threads participate in thread creation. This leads to a tree-like

creation scheme which reduces this initial delay to a factor of dlog

2

#THREADSe.

However, the initial delay factor may be further reduced to only 1 by excluding

the master thread from the thread creation scheme as outlined on the upper right

hand side of Fig. 5. The master thread creates exactly one worker thread and then

immediately starts with the execution of the actual program. The �rst worker

thread subsequently creates the other worker threads following a binary tree

scheme. In this way, the administrative overhead due to thread creation overlaps



with the execution of a program's (sequential) startup phase, e.g. reading input

data from �les.

The combination of a stop barrier and a subsequent start barrier represents

a full barrier synchronization which is known to scale poorly with the number

of threads [14] and, therefore, is a major cause of overhead. However, scalability

can be improved by organizing the barrier as a tree-like structure of pairwise

synchronizations, as depicted on the lower right hand side of Fig.5. Threads with

an odd ID simply pass the stop barrier, immediately stopping at the following

start barrier. Each thread with an even ID n waits for thread n+1 to complete.

Then, it either passes the stop barrier itself if its ID is not a multiple of 4

or it continues to wait for thread n + 2 otherwise, and so on. This concurrent

synchronization scheme allows the master thread (thread ID 0) to synchronize

itself with all worker threads in only dlog

2

#THREADSe steps.

In the case of a fold-With-loop, the stop barrier is also responsible for fold-

ing the partial results of the single threads to form the overall result. Each time

a thread synchronizes itself with another thread, it folds its own intermediate

result with that of the other thread. This scheme is further improved by allow-

ing threads which synchronize with several other threads to do so in any order.

Then, a thread may already execute �nal fold operations while still waiting for

other threads to complete their partial result. As in the thread creation phase,

administrative overhead again overlaps with productive computation.

4 Preliminary performance evaluation
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Fig. 11. 2-D Jacobi relaxation on 4-proc. Sun Ultra Enterprise 3000.

Preliminary performance tests of the current implementation described in the

previous section have been made on two di�erent machines: a Sun Ultra Enter-

prise 3000 with 4 processors and 512MB of memory and a Sun Ultra Enterprise

4000 featuring 12 processors and 7.5GB of memory. Both are running Solaris,



versions 2.5.1 and 2.6, respectively. A simpli�ed variant of 2-dimensional Jacobi

relaxation [8] served as a benchmark kernel. Test runs for various problem sizes

have been made with up to 4 threads on the Enterprise 3000 and with up to

12 threads on the Enterprise 4000. Overall execution times achieved on the two

machines are depicted in Figs. 11 and 12. The respective speedups relative to a

program which from exactly the same Sac source code has been compiled for

sequential execution are shown in Figs. 11 and 13.
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Fig. 12. 2-D Jacobi relaxation on 12-proc. Sun Ultra Enterprise 4000: execution times.

As the �gures demonstrate, multi-threaded execution of the benchmark ker-

nel yields substantial reductions in overall runtimes on both machines and for all

problem sizes investigated. Speedups reach up to 3.71 on the 4-processor system

and up to 8.83 on the 12-processor system. Considerable speedups are achieved

even for relatively small problem sizes of only 100�100 or 50�50 array elements

although they require very frequent synchronization among threads. Only for un-

favourable combinations of array size and number of threads, speedups decrease

due to load imbalances resulting from the simple loop scheduling mechanism.

It is important to note that multi-threading per s�e produces nothing but

overhead. Only when it comes to program execution on a multiprocessor, multi-

threading enables the operating system scheduler to assign di�erent threads to

di�erent processors for execution. As a consequence, speedups due to multi-

threading can only be expected if di�erent threads of an application actually

run on di�erent processors. However, the way the underlying operating system

distributes runnable threads among the available processors on a given machine

cannot be in
uenced by the application itself. Still, it is obvious that no addi-

tional speedup can be expected if the number of threads exceeds the number of

available processors.

However, if exclusive access to a machine cannot be guaranteed as it is the

case with the machines used for benchmarking, the execution of an application's

threads may interfere with other user and system processes. As soon as the total
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Fig. 13. 2-D Jacobi relaxation on 12-proc. Sun Ultra Enterprise 4000: speedups.

number of runnable threads in a system exceeds the number of processors avail-

able, the operating system scheduler is forced to assign several threads to the

same processor for execution. In this case, a loop scheduler that statically assigns

work to threads, like the one in our implementation, causes severe load imbal-

ance, leading to a performance degradation. This is exactly what can be observed

with the performance �gures for the two larger test cases on the 12-processor

machine. When these measurements were done, exactly one other process was

constantly running in the system. Hence, up to 11 threads, execution time and

speedup �gures scale well, but drop dramatically if 12 threads are used.

5 Conclusions and future work

Sac is a programming language primarily designed with numerical applications

in mind. A powerful language construct called With-loop allows the speci�ca-

tion of high-level array operations independent of the operands' dimensionalities

and shapes. Operations are de�ned elementwise on entire arrays or on subarrays

selected by index ranges or strides. Despite the high level of abstraction in pro-

gram speci�cations, sophisticated compilation schemes allow the transformation

of With-loops into e�ciently executable (sequential) code [21,23].

The elementwise speci�cation of operations on (su�ciently large) arrays ex-

poses a high amount of �ne-grained concurrency. This paper describes a com-

pletely implicit approach to exploit this concurrency to speed up program execu-

tion on shared memory multiprocessors. A compilation scheme which transforms

With-loops into multi-threaded target code is outlined along with the required

runtime system. By completely separating the loop scheduling facility from the

loops themselves, the existing sequential compilation scheme ofWith-loops can

largely be reused. Moreover, this provides the opportunity to easily exchange

the loop scheduling implementation in order to adjust load balancing strategies

to the program structure or target system properties. An execution model for



multi-threaded programs is presented that overcomes the limitations of a sim-

ple fork/join oriented approach. Instead of repeatedly creating and terminating

threads, they are created exactly once upon program startup while all synchro-

nization is realized by a tailor-made variant of barrier synchronization.

Preliminary performance evaluations of our current implementation are made

on two Sun Ultra Enterprise systems with 4 and 12 processors. A simpli�ed

version of 2-dimensional Jacobi relaxation is used as a benchmark kernel. Per-

formance �gures for various problem sizes demonstrate that even for relatively

small problems substantial speedups are achieved on both systems reaching up

to 3.71 or 8.83, respectively.

Future work will focus on reducing the negative performance impact of the

synchronization barriers which complete each concurrently executed code seg-

ment. Since the barrier implementation itself is already highly optimized, the

emphasis will be on improving the load balancing capabilities of the loop sched-

uler in order to cope with variations in computational complexity for di�erent

elements of the target array as well as with threads belonging to other pro-

cesses on systems not used exclusively. An alternative approach is to identify

larger sections of code that can be executed concurrently without intermediate

synchronization, e.g., synchronization barriers between consecutive With-loops

can be eliminated as far as there is no data dependence between them.
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