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Abstract

SAC is a purely functional array processing language de-
signed with numerical applications in mind. It supports
generic, high-level program specifications in the style of
APL. However, rather than providing a fixed set of built-
in array operations, SAC provides means to specify such
operations in the language itself in a way that still al-
lows their application to arrays of any dimension and size.
This paper illustrates the specificational benefits of this ap-
proach by means of a high-level SAC implementation of the
NAS benchmark MG realizing 3-dimensional multigrid re-
laxation with periodic boundary conditions.

Despite the high-level approach, experiments show that
by means of aggressive compiler optimizations SAC man-
ages to achieve performance characteristics in the range of
low-level Fortran and C implementations. For benchmark
size class A, SAC is outperformed by the serial Fortran-77
reference implementation of the benchmark by only 23%,
whereas SAC itself outperforms a C implementation by the
same figure. Furthermore, implicit parallelization of the
SAC code for shared memory multiprocessors achieves a
speedup of 7.6 with 10 processors. With these figures, SAC
outperforms both automatic parallelization of the serial
Fortran-77 reference implementation as well as an OpenMP
solution based on C code.

1 Introduction

SAC (for Single Assignment C) [26, 27] is a purely func-
tional programming language with a C-like syntax and ex-
tended support for n-dimensional arrays. It allows for high-
level array processing in a way similar to APL [20]. Implicit
memory management and the ability to use arrays as func-
tion arguments and results without restrictions make array
processing in SAC as simple as dealing with scalars in con-
ventional languages.

Unlike APL and many other array languages,

e.g. Fortran-90/95 [1], SAC does not provide com-
pound array operations as built-in primitives. Instead,
so-called wiTH-loop expressions (or wiTH-loops for short)
allow to define such array operations in SAC itself. Still,
they may be applied to arrays of any dimension and size, a
property which in other languages is usually restricted to
built-in primitives. In fact, most operations typical for array
languages can be defined as functions in SAC without loss
of generality [15].

The advantages of this design are manifold. The core
language remains clear and simple; efforts for optimiza-
tion and parallelization can be focussed on a single though
powerful language construct. Any functionality which may
be expected from an array processing language is provided
through a comprehensive SAC-implemented array library.
In contrast to a rich collection of built-in primitives, this or-
ganization of the language’s array support is much easier to
maintain and to extend; portability to different architectures
comes for free. Furthermore, programmers themselves can
customize the array support to their individual needs just
as language implementors. This ability allows for a very
generic programming style where application programs are
constructed in multiple layers of abstractions based on pre-
specified building blocks of varying complexity.

The paper demonstrates the practical applicability of this
high-level generic programming style by means of a case
study. From the popular NAS benchmark suite [2, 4] we
have chosen the application kernel MG, which realizes 3-
dimensional multigrid relaxation with periodic boundary
conditions. Based on the SAC array library it can be imple-
mented by a surprisingly short program, which, to a large
extent, turns out to be an almost literal translation of the
benchmark’s mathematical specification.

Benefits of generic, high-level programming in devel-
opment and maintenance are only as convincing as the
penalty in terms of runtime performance remains accept-
able. Therefore, we investigate the performance penalty to
be paid by SAC compared with low-level implementations
of the benchmark. They are the serial Fortran-77 reference
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Figure 1. Syntax of with-loop expressions.

implementation coming with the NAS benchmark suite and
a C implementation directly derived from that code. De-
spite the high-level approach, experiments show that SAC
manages to achieve performance characteristics in the same
range as these low-level implementations.

Moreover, the SAC compiler may generate multi-
threaded code for parallel execution on shared memory mul-
tiprocessor systems without any additional programming
effort [13, 14]. Experiments with up to 10 processor yield
a maximum speedup of 7.6 for SAC, a scaling behaviour
that outperforms both automatic parallelization of the serial
Fortran-77 reference implementation as well as an OpenMP
[9] solution based on the ported C code.

The paper is organized as follows. Section 2 provides
a brief introduction to SAC. The NAS benchmark MG is
outlined in Section 3, its high-level SAC implementation in
Section 4. Section 5 describes the runtime performance ex-
periments in more detail and analyses their outcomes. Some
related work is sketched out in Section 6 while Section 7
concludes.

2 SAC

The core language of SAC is a functional subset of C, a
design which aims at simplifying adaptation for program-
mers with a background in imperative programming tech-
niques. This kernel is extended by n-dimensional arrays as
first class objects. SAC provides a small set of built-in array
operations, basically primitives to retrieve data pertaining to
the structure and contents of arrays, e.g. an array’s dimen-
sion (di n{ array) ), its shape (shape( array) ), or individ-
ual elements (array[ index-vector] ).

Compound array operations are specified using WITH-
loop expressions, whose syntax is outlined in Fig. 1. A
WITH-loop basically consists of two parts: a generator and
an operation. The generator defines a set of index vectors
along with an index variable representing elements of this
set. Two expressions, which must evaluate to vectors of
equal length, define lower and upper bounds of a rectangu-
lar index vector range. An optional filter may further restrict
this selection to grids of arbitrary width. Let a, b, s, and w
denote expressions that evaluate to vectors of length n, then

(a<=1i_vec <bstep swidth w)
defines the following set of index vectors:
{i_vec | Vje{o,...n-1} : aj < i_vec; < bj
A (i_vec; — aj) mod s; < w;}.

The operation specifies the computation to be performed for
each element of the index vector set defined by the gener-
ator. Let shp denote a SAC-expression that evaluates to a
vector, let _vec denote the index variable defined by the
generator, let array denote a SAC-expression that evalu-
ates to an array, and let ezpr denote any SAC-expression.
Moreover, let fold_op be the name of a binary commuta-
tive and associative function with neutral element neutral.
Then

e genarray( shp, exrpr) generates an array of
shape shp whose elements are the values of expr for
all index vectors from the specified set, and 0 other-
wise;

e nodarray( array, expr) defines an array of
shape shape( array) whose elements are the values
of expr for all index vectors from the specified set,
and the values of array[ i_vec] at all other index po-
sitions;

o fold( fold op, neutral, expr) specifies a re-
duction operation; starting out with neutral, the value
of expr is computed for each index vector from the
specified set and these are subsequently folded using
fold_op.

The usage of vectors in wiTH-loop generators as well as
in the selection of array elements along with the ability to
define functions which are applicable to arrays of any di-
mension and size allows for implementing APL-like com-
pound array operations in SAC itself. This feature is ex-
ploited by the SAC array library, which provides, among
others, element-wise extensions of arithmetic and relational
operators, typical reduction operations like sum and prod-
uct, various subarray selection facilities, as well as shift and
rotate operations. More information on SAC is available at
http://ww. i nformati k. uni-kiel.de/sacbase/.



Initial solution: u = 0
Each iteration: r = v — Au (evaluate residual)
u = u 4+ MFr (apply correction)
V-cycle operator M*: 2z, = MP"*r;
if k>1
rk—-1 = Prg (restrict residual)
Zho1 = MF 'y (recursive solve)
2K = Qzx-1 (prolongate)
Tk = rry — Az (evaluate residual)
2k = 2z + Srr  (apply smoother)
else
21 = Sr (apply smoother)

Figure 2. Mathematical specification of NAS-MG given in [3].
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Figure 3. lllustration of multigrid V-cycle.

3 NASbenchmark MG

The NAS benchmark suite [2, 3, 4] has been developed
at NASA Ames Research Center as part of the Numerical
Aerodynamic Simulation Program. Its eight benchmarks
are considered representative for large scale applications in
computational fluid- and aerodynamics.

The application kernel MG implements a V-cycle multi-
grid algorithm [18, 17] to approximate a solution « of the
discrete Poisson equation V2u = v on a 3-dimensional grid
with periodic boundary conditions. Fig. 2 shows the math-
ematical specification, as given in [3]. Starting out with the
constant zero array as initial solution v, each iteration step
consists of computing the current residual and, afterwards,
applying a correction defined by the recursive V-cycle op-
erator M*, k = logan with n® being the initial grid size.
Relaxation and smoothing steps are recursively embedded

within operations to coarsen and refine grid granularities.
A, P,@, and S denote 27-point stencil operators whose co-
efficients are provided by the benchmark specification.

Fig. 3 illustrates the V-cycle algorithm for an initial grid
of 162 elements. The order in which the different transfor-
mations are applied is depicted along the horizontal axis,
whereas the grid size involved in each step is indicated
along the vertical axis. After computing an initial residual,
the grid is recursively coarsened until it consists of no more
than two elements in each dimension. A single smoothing
step is applied to the coarsest grid before it is refined again
with residual computations and smoothing steps after each
refinement until the original granularity is reached.

The rationale behind this multigrid approach is to ac-
celerate the propagation of low-frequent defects across the
original grid and, hence, to improve the overall convergence
behaviour.



4 |Implementation in SAC

Following a top-down approach, the mathematical spec-
ification of the multigrid V-cycle algorithm, as given in
Fig. 2, can almost literally be translated into SAC code.
Definitions of the corresponding SAC functions Ma i d and
VCycl e are shown in Fig. 4. M& i d creates the initial so-
lution grid u before it alternatingly computes the current
residual and the correction of the current solution by means
of a complete V-cycle. The recursive function VCycl e
realizes exactly the sequence of basic operations, as illus-
trated in Fig. 3. Both functions are applicable to arrays of
any dimension and size, as indicated by the SAC array type
doubl e[ +] . Although NAS-MG specifically addresses 3-
dimensional grids only, this SAC code could be reused for
grids of any dimension without alteration.

doubl e[ +] Mzid( double[+] v,
int iter)

{

u = genarray( shape(v), 0.0);

for( i=0; i<iter; i+=1)
{
Resi d( u);

V -
u + VCycle( r);

;
u
}

return( u);

}

doubl e[ +] VCycl e( doubl e[ +] r)

{
if (shape(r)[[0]] > 2 + 2)
{

rn = Fine2Coarse( r);
zn = VCycle( rn);
z = Coarse2Fine( zn);
r =r - Resid( z);
z =2z + Snmooth( r);
}
el se
{
z = Smooth( r);
}
return( z);

}

Figure 4. Multigrid V-cycle in SAC.

The arithmetic array operations used in the definitions
of Maid and VCycl e are simply imported from the
SAC array library. Additional effort is required to re-
alize the application-specific functions Resi d, Snoot h,
Fi ne2Coar se, and Coar se2Fi ne. However, any of
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Figure 5. Adding artificial boundary elements.

these operations basically consists of a 27-point stencil re-
laxation operation with periodic boundary conditions but
varying stencil coefficients.

A standard technique for implementing relaxation with
periodic boundary conditions is to artificially extend the
original grid by additional boundary elements. More pre-
cisely, each original boundary element is replicated on the
opposite side of the grid, as illustrated in Fig. 5 for a
simple vector. This extension allows to implement relax-
ation with periodic boundary conditions by two consecu-
tive steps. First, artificial boundary elements are initialized
according to their location. Afterwards, an ordinary fixed
boundary relaxation step is applied to the extended grid.
However, extending each array involved by two elements in
each dimension requires to adjust the V-cycle termination
condition, as can be observed in Fig. 4.

doubl e[ +] Resi d( doubl e[ +] u)

{
u = Set upPeri odi cBorder( u);
u = Rel axKernel ( u, A;
return( u);

}

doubl e[ +] Smoot h( doubl e[ +] r)

{

r
r

Set upPeri odi cBorder( r);
Rel axKernel ( r, S);

return( r);

}

Figure 6. Implementations of V-cycle func-
tions Resid and Smooth.

Based on the existing implementation of a relaxation
kernel with fixed boundary conditions described in [16],
the four V-cycle operations can be implemented straightfor-
wardly. As shown in Fig. 6, implementations of Resi d and
Snoot h boil down to setting up the periodic boundary ele-
ments followed by a single relaxation step. In fact, Resi d



doubl e[ +] Fi ne2Coarse( doubl e[ +] r)
{

rs = SetupPeriodicBorder( r);
rr = Rel axKernel ( r, P);

rc = condense( 2, rr);

rn = enbed( shape(rc)+1,

O*shape(rc), rc);

return( rn);

}

doubl e[ +] Coar se2Fi ne( doubl e[+] rn)
{

rp = SetupPeriodi cBorder( rn);
rs = scatter(2, rp);

rt = take( shape(rs)-2, rs);
r = RelaxKernel( rt, Q;
return( r);

Figure 7. V-cycle mapping functions.

and Snoot h only differ with respect to stencil coefficients
defined by the constant vectors Aand S, which are provided
by the benchmark specification.

Implementations of the remaining V-cycle functions
Fi ne2Coar se and Coar se2Fi ne are shown in Fig. 7.
Besides applying additional relaxation steps similar to
Resi d and Snoot h, but with yet different stencil coef-
ficient vectors P and Q, they map fine grids to coarse grids
and vice versa. These mappings are illustrated in Fig. 8 and
in Fig. 9, respectively. Both steps can be realized by combi-
nations of predefined operations from the SAC array library.

The fine-to-coarse mapping is basically implemented by
means of the function condense(str, a), which cre-
ates an array whose extent in each dimension is by a factor

Figure 8. Fine-to-coarse mapping.

of st r less than that of the given array a. Its elements are
taken from a applying a stride of st r . However, due to the
additional boundary elements, condense does not exactly
match the fine-to-coarse mapping requirements, as the re-
sult array lacks one such element (see Fig. 8). Therefore,
the intermediate array r ¢ must be embedded into an array
of correct size. This is done by a subsequent application
of the library function enbed( shp, pos, a), which
creates a new array of shape shp, whose elements — start-
ing at index position pos — are taken from the argument
array a.
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Figure 9. Coarse-to-fine mapping.

The coarse-to-fine mapping is implemented by means of
the library function scatter (str, a), which is com-
plementary to condense. As illustrated in Fig. 9, it cre-
ates an array which in each dimension is by a factor of st r
larger than the given array a. All elements of a are copied
into every other location of the result array applying the
given stride st r ; remaining elements are initialized by ze-
ros. However, due to the additional boundary elements, the
resulting array is by two elements too large in each dimen-
sion. Subsequent application of the library function t ake
removes them.

All array library functions used throughout this section
are realized straightforwardly by means of wiTH-loop ex-
pressions. As shown in Fig. 10, their implementations addi-
tionally benefit from some syntactical simplifications which
have not yet been addressed. Whenever the required length
for vectors in generators of wiTH-loop expressions is al-
ready determined by the dimension of the result array, sim-
ple scalars may be used instead of vectors. They are im-
plicitly replicated to appropriately sized vectors. Moreover,
specifications of lower and upper bounds of index vector
ranges may be replaced by simple dots denoting the small-
est or the largest legal index vector with respect to the shape
of the result array. This simplifies the specification of oper-
ations which are uniform on all or all inner array elements.



doubl e[ +] genarray( int[.] shp,

doubl e val)

{

a=wth (. <=iv <=.)

genarray( shp, val);
return( a);

}

doubl e[ +] condense( int str,
doubl e[ +] a)
{
ac = with (. <=iv <=.)
genarray( shape(a) / str,
a[fstr*iv]);
return( ac);

}

doubl e[ +] scatter( int str,
doubl e[ +] a)
{
as = with (. <=iv <= . step str)
genarray( str * shape(a),

a[iv/istr]);
return( as);
}
doubl e[ +] embed( int[.] shp,
int[.] pos,
doubl e[ +] a)
{

ae = with (pos <= iv < shape(a) + pos)
genarray( shp, a[iv-pos]);
return( ae);

}

doubl e[ +] take( int[.] shp,
doubl e[ +] a)
{
at = with (. <=iv <=.)
genarray( shp, a[iv]);
return( at);

}

Figure 10. Array library functions.

5 Experimental Evaluation

This section analyses the runtime performance achieved
by code compiled from the SAC specification of NAS-MG,
as outlined in the previous section, and compares it with that
of the serial Fortran-77 reference implementation as well as
with that of a C-based OpenMP solution.

The following experiments were made on a 12-processor
SUN Ultra Enterprise 4000 shared memory multiprocessor,
running SOLARIS-7. The serial Fortran-77 reference im-
plementation coming with version 2.3 of the NAS bench-

mark suite was compiled by the SUN Workshop compiler
f 77 v5.0; its automatic parallelization feature additionally
produced multithreaded code. The OpenMP implementa-
tion was compiled by the Omni compiler v1.4a [25, 22]
developed by Real World Computing Partnership (RWCP).
The code itself has directly been ported by RWCP from the
serial Fortran-77 reference implementation to C and after-
wards has been decorated with OpenMP directives. 1 Last
but not least, SAC code was compiled using the current re-
search compiler sac2c v0.91. The SUN Workshop com-
piler cc v5.0 served as a backend compiler for both SAC
and OpenMP. Conforming with the benchmark rules, tim-
ing was restricted to multigrid iterations and, thus, ignores
startup and finalization overhead. Several size classes are
defined by the benchmark specification, two of which were
selected for the experiments:

o Class W: initial grid size 643 and 40 iterations,

o Class A: initial grid size 2562 and 4 iterations.
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Figure 11. Single processor performance.

Fig. 11 shows the runtime performance achieved by all
three candidates for both size classes when explicitly being
compiled for sequential execution. In fact, the Fortran-77
program outperforms the compiled SAC code by 29.6% and
by 23.0% for size classes W and A, respectively, whereas
the SAC code in turn outperforms the OpenMP, more pre-
cisely C, implementation by 14.2% and by 22.5%. Despite
its considerably higher level of abstraction, the SAC specifi-
cation achieves runtime performance characteristics which
are in the same range as the rather well-tuned low-level
Fortran-77 and C implementations. Moreover, the runtime
performance achieved by SAC improves with increasing
problem size, whereas the ratio between C and Fortran-77
seems to be independent of the problem size.

1Both the Omni OpenMP compiler as well as the OpenMP
implementation of the NAS benchmark suite are available at
http://phase.etl.go.jp/Omi/.
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Figure 12. Speedups relative to individual sequential performance.

A closer look at the Fortran-77 reference implementation
reveals that to some extent tricky hand optimizations are re-
sponsible for the superior runtime performance. In general,
a 27-point stencil operation incurs 27 multiplications and
26 additions per array element. However, the number of
multiplications may be reduced to only four by taking into
account that actually just four different coefficients occur
in any of the stencil operations. This optimization is real-
ized both explicitly in the Fortran and C/OpenMP imple-
mentations as well as by implicit compiler optimization in
the case of SAC. However, the low-level codes additionally
store intermediate results shared among re-computations
of different array elements in auxiliary buffers and thus
reduce the actual number of additions to values between
12 and 20 depending on concrete stencils. Unfortunately,
the SAC compiler currently does not incorporate appropri-
ate optimization techniques to mimic this low-level imple-
mentation trick. Still, it is unclear at the time being why
the C/OpenMPimplementation is so much slower than the
Fortran-77 reference implementation, although it is almost
literally derived from that code. In particular, the same sten-
cil optimization is applied.

Fig. 12 shows the parallel performance achieved by
Fortran-77, OpenMP, and SAC using up to ten processors.
Simultaneous usage of all twelve processors available was
not feasible as the machine is not operated in batch mode
and, hence, other system and user processes are always ac-
tive. Both the Fortran-77 and the SAC implementations are
implicitly parallelized without any additional hints to the
compilation systems. In the case of OpenMP, a total of 30
manually introduced compilation directives guide the com-
piler during the parallelization process. All figures are given
relative to best individual sequential runtimes. However, the
overhead generated by parallel code executed on a single

processor is rather small in all three cases.

SAC achieves speedups of up to 5.3 and up to 7.6 for size
classes W and A, respectively. Unsurprisingly, the larger
problem size A scales much better than size class W. In fact,
size class A is the smallest one actually intended for bench-
marking, whereas size class W is specifically designed for
program development on uniprocessor PCs and worksta-
tions [4]. Whereas the scaling behaviour of the automat-
ically parallelized Fortran-77 code is significantly worse
than that of SAC reaching speedups of only 2.8 and 4.0,
the compiler directive based approach of OpenMP shows
the best scalability in the field, leading up to excellent 8.0
and 9.0 for size classes W and A, respectively.

However, sequential base runtimes are as important for
parallel performance as scalability. Therefore Fig. 13 shows
speedups achieved by all three candidates relative to the
fastest sequential solution in the field, i.e. the Fortran-77
reference implementation. With its superior scalability the
SAC implementation outperforms the automatically paral-
lelized Fortran-77 code using only four processors. For size
class A, superior sequential base performance even allows
SAC to stay ahead of OpenMP, at least within the processor
range investigated.

In the case of SAC, The main scalability limitation arises
from the repeated reduction of the grid size during the V-
cycle. Whereas parallel execution pays for larger grids on
the top end of the V-cycle, runtime overhead increasingly
reduces benefits for smaller grids on the bottom end. Below
a certain threshold grid size, it is advised to perform all op-
erations sequentially to avoid excessive overhead. This se-
quential kernel of the NAS-MG benchmark limits the over-
all scalability. Although, this problem is algorithm-inherent
rather than implementation-specific, its actual impact on
runtime performance is significantly increased by dynamic
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Figure 13. Speedups relative to sequential Fortran-77 performance.

memory management, on which SAC heavily relies. Since
the absolute overhead incurred by memory management op-
erations is invariant against grid sizes involved, it is neg-
ligible for large grids but shows a growing performance
impact with decreasing grid size. As a consequence, the
sequential kernel of NAS-MG, where operations are per-
formed on very small grids, is considerably more expensive
with dynamic memory management in SAC than it is with
a static memory layout in a low-level Fortran-77 implemen-
tation or an almost static memory layout, as employed by
the C/OpenMP code investigated. Fortunately, the absolute
performance impact of this effect decreases with growing
initial grid size. This explains why the scalability of the
SAC code henefits significantly more from switching from
size class W to size class A as the other implementations
do.

6 Reated Work

There are various approaches to raise the level of ab-
straction in array processing from that provided by con-
ventional scalar languages. Fortran-90/95/HpPF [1, 21] ex-
tend traditional Fortran-77 by a fixed set of built-in primi-
tives which are applicable to entire arrays of any dimension
and size. The triple notation allows to restrict such oper-
ations to subarrays and grids similar to wiTH-loop genera-
tors. Still, arrays are manipulated via side-effecting opera-
tions and memory management is completely explicit. The
language also provides no means to build generally appli-
cable abstractions on top of the limited collection of array
primitives.

Nevertheless, a considerable price in terms of runtime
performance has to be paid for the increased level of ab-
straction. Investigations involving the NAS benchmark MG

showed an HPF implementation to be outperformed by the
reference Fortran-77+MPI solution by a factor of nearly
three on a single processor and by a factor of 8 with both
employing 32 processors [11, 12].

ZPL [7] offers a more elegant imperative solution based
on regions. Regions are possibly dynamically defined sets
of array indices, to which any scalar operation can be
mapped to manipulate exactly the elements of the region.
More sophisticated mappings, e.g. linear projections or per-
mutations, can be realized through a set of built-in prepo-
sitions. Entire procedures can be applied to arrays of dif-
ferent dimension, but problems arise where the desired
functionality depends on structural properties of arguments.
Dimension-invariant abstractions are not possible.

Investigations on the NAS benchmark MG on a similar
Sun Enterprise multiprocessor as was used in our experi-
ments showed a maximum speedup of 5 using 14 proces-
sors, although the focus was on size classes B and C [8].
They represent significantly larger problems and, hence,
should yield better parallel performance characteristics than
size classes W and A used in our experiments. The inves-
tigations reported in [8] also cover SAC, showing it to be
slightly inferior to ZPL both in sequential base performance
as well as scalability. However, these results were obtained
using previous versions of both the SAC compiler as well
as the benchmark implementation.

In the field of functional programming languages, Sisal
[6] used to be the most prominent array language. It of-
fers high-level array handling free of side-effects based on
implicit memory management. Compound array opera-
tions are defined by means of for-loops, Sisal-specific ar-
ray comprehensions. However, the original design [23]
supports only vectors; higher-dimensional arrays must be
represented as nested vectors of equal length. It neither



provides built-in high-level aggregate operations as, for in-
stance, Fortran-90/95 nor means to define such general ab-
stractions. More recent versions, e.g. Sisal 2.0 [5, 24] or
Sisal-90 [10], promise improvements, but none of them
have been implemented.

Previous investigations on the NAS benchmark MG have
shown that SAC clearly outperforms Sisal in sequential ex-
ecution [28]. However, these investigations differ from the
results presented here in several aspects. The SAC imple-
mentation of NAS MG is replaced by new, significantly
more generic code, the SAC compiler has considerably been
improved since then, and, last but not least, multiproces-
sor performance using the implicit parallelization feature is
analysed in addition to serial performance characteristics.

SA-C or SAsSsY [19] combines elements of Sisal’s ar-
ray support with a C-like syntax otherwise, the latter very
much for the same reasons as SAC. SA-C provides specific
support for image processing and explicitly targets recon-
figurable computing systems based on FPGAs. The level
of abstraction in array processing is similar to the later ver-
sions of Sisal. In particular, arrays always have a fixed di-
mension; generally applicable abstractions similar to those
used for implementing NAS-MG in SAC are not supported.
Due to the more specific target environment, no perfor-
mance figures for implementations of the NAS benchmark
suite are available for SA-C.

7 Conclusions and future work

This paper investigates the suitability of the functional
array processing language SAC for implementing a non-
trivial numerical problem. The NAS benchmark MG, which
realizes multigrid relaxation with periodic boundary con-
ditions, is chosen as a case study. A generic, high-level
SAC implementation is presented, which in major parts al-
most literally follows the mathematical benchmark specifi-
cation. Nevertheless, the SAC compiler succeeds in gener-
ating machine code which is outperformed by the low-level
Fortran-77 reference implementation by only 23% and itself
outperforms a C implementation which is directly derived
from the reference implementation to a similar degree (size
class A).

Using the implicit parallelization facility, SAC achieves
speedups of up to 7.6 with 10 processors of a shared
memory multiprocessor without any additional program-
ming effort. It outperforms both automatically parallelized
Fortran-77 code due to better scalability as well as C-based
OpenMP code due to better sequential base performance.
This is particularly remarkable as the SAC implementa-
tion is highly generic, solves the underlying problem at an
almost mathematical level of abstraction, and reduces the
code size compared with the two low-level solutions under
consideration by more than an order of magnitude.

One area of future work are additional performance
investigations. This includes larger problem sizes like
size classes B and C of the NAS specification but also
larger multiprocessor systems to determine scalability lim-
its which have not yet been reached even for size class W.
Furthermore, a direct comparison with the MPI-based par-
allel reference implementation of NAS-MG would be inter-
esting.

Other areas of future work are improvements both in the
benchmark as well as in the compiler implementation. A
direct implementation of relaxation with periodic boundary
conditions that makes artificial boundary elements obsolete
is most desirable. On the one hand, it saves the overhead
associated with updating these additional elements. On the
other hand, it allows for a benchmark implementation that is
even closer to the mathematical specification as the existing
one. With respect to the compiler implementation, it would
be interesting to investigate optimizations which implicitly
realize the tricky stencil optimization exploited by both low-
level solutions.
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