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Abstra
t Sa
 is a fun
tional array pro
essing

language that tries to 
ombine generi
, high-level

program spe
i�
ations with eÆ
ient runtime behav-

ior. Being parti
ularly designed for numeri
al ap-

pli
ations, runtime performan
e 
riti
ally depends

on the e�e
tive utilization of the memory hierar-


hy. For many programs, however, it 
an be ob-

served that the a
hieved performan
e signi�
antly


hanges with small variations in the problem size.

Array padding is a well-known optimization te
h-

nique that adjusts the data layout of arrays in order

to make better usage of 
a
hes. The paper presents

an algorithm that derives a 
ustomized data layout

from an array a

ess pattern and a 
a
he spe
i�
a-

tion. Ca
he phenomena su
h as spatial and tempo-

ral reuse are taken into a

ount as well as di�erent


a
he ar
hite
tures. The e�e
tiveness is demon-

strated by investigations on the runtime perfor-

man
e of the PDE1 ben
hmark on a shared memory

multipro
essor.
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1 Introdu
tion

Sa
 is a fun
tional array pro
essing language

that tries to 
ombine generi
, high-level pro-

gram spe
i�
ations with eÆ
ient runtime be-

havior [19, 18℄. Impli
it 
ompiler support

allows to derive multithreaded host ma
hine


ode that exe
utes in parallel on shared mem-

ory multipro
essors [6℄. Being designed with

numeri
al appli
ations in mind, the e�e
tive

utilization of the memory hierar
hy plays a key

role in a
hieving good performan
e [13℄. In the


ontext of shared memory ar
hite
tures, this

is parti
ularly important: failure to retrieve

data from one of the pro
essor private 
a
hes

not only results in a slow main memory a
-


ess | depending on the system ar
hite
ture

it also in
reases 
ontention on the memory bus

with the 
onsequen
e of further delays on bus-

based systems or may 
ause data to be fet
hed

from a remote pro
essing site via the inter
on-

ne
tion network in the 
ase of so-
alled s
al-

able shared memory systems. Moreover, per-

forman
e degradation due to poor 
a
he uti-

lization grows with in
reasing numbers of pro-


essors involved thus limiting s
alability.

It is well-known that small 
hanges in the

problem size often have a signi�
ant impa
t

on the runtime performan
e of numeri
al ap-

pli
ation programs. We have 
hosen the well-

known ben
hmark PDE1 as an example in

order to investigate and quantify this phe-

nomenon. PDE1 implements red/bla
k su
-


essive over-relaxation on 3-dimensional grids.

Fig. 1 shows average wall
lo
k exe
ution times

per inner grid point using 4 pro
essors on a

SUN Ultra Enterprise 4000. The egde length

of the 
ubi
 grid is uniformly varied from 24

til 280 in steps of 8. Using double pre
ision


oating point numbers this involves array sizes

between 108KB and 168MB. It 
an be observed

that the time required to 
ompute a single grid

element di�ers from 45nse
 for the best per-

forming problem size up to 254nse
 for the

worst performing one; this means a fa
tor of

5.6. Sin
e the exe
uted 
ode itself remains

un
hanged, these variations in runtime perfor-

man
e 
an only be attributed to di�erent de-

grees of 
a
he utilization.
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Figure 1: PDE1: average wall
lo
k exe
ution times per grid point for varying problem sizes.

Two hardware 
hara
teristi
s of 
a
hes are

mainly responsible for the varying performan
e

observed: their organization in 
a
he lines and

their limited set asso
iativity [7℄. In 
onjun
-

tion, they make 
a
hes extremely sensitive to

the data layout when regularly stru
tured data

is a

essed in regular patterns both of whi
h is

typi
al for numeri
al 
odes involving large ar-

rays. Many di�erent e�e
ts have been identi-

�ed [20℄; for this paper, however, we fo
us on

so-
alled self-interferen
e, i.e. 
a
he 
on
i
ts

that arise from multiple referen
es to a single

array. A spatial reuse 
on
i
t o

urs whenever

not all array elements a

essed in one loop in-

stan
e 
an simultaneously be held in the 
a
he.

The number of di�erent array elements that

are mapped to the same 
a
he set ex
eeds the


a
he's set asso
iativity and, hen
e, 
a
he lines

are 
ushed from the 
a
he before spatial reuse


an be realized. A temporal reuse 
on
i
t o
-


urs when potential reuse between two refer-

en
es to the same array element 
annot be ex-

ploited be
ause another array referen
e inter-

feres and 
auses the �rst one to be 
ushed from

the 
a
he before a possible reuse has o

urred.

Avoiding su
h 
on
i
ts is mandatory in order

to a
hieve good performan
e [12℄.

The relative pla
ement of array referen
es in

a 
a
he 
an be in
uen
ed by modifying the ar-

ray data layout. So-
alled array padding adds

dummy elements to an array in one or the other

inner dimension [1℄, e.g. an array whose orig-

inal shape is [100,100℄, may be transformed

into an array of shape [100,102℄ adding two


olumns of dummy elements. Applying ar-

ray padding manually, however, is hardly ef-

�
ient as it requires both a lot of e�ort and

expert knowledge on the programmer's side; it

in
reases program 
omplexity and makes pro-

grams less readable and error-prone. More-

over, array padding renders program spe
i�
a-

tions ar
hite
ture-dependent sin
e ea
h prob-

lem size and 
a
he 
on�guration typi
ally re-

quires a di�erent amount of padding.

However, as a 
ompiler optimization array

padding might be well-suited to a
hieve 
onsis-

tent performan
e over a wide range of problem

sizes and 
a
he ar
hite
tures. Unfortunately,

things are not as simple in low-level languages

su
h as C or Fortran. Sin
e these languages'

semanti
s guarantee a 
ertain (unpadded) data

layout, thorough program analysis is required

in order to prove that padding does not alter

the meaning of a program. Here, the design

of high-level languages like Sa
 pays o�. Sin
e

these 
ompletely abstra
t from a 
on
rete data



layout, they are free to 
hoose the most suit-

able one with respe
t to a

ess patterns and

hardware 
hara
teristi
s. This in
ludes array

padding as an additional optimization te
h-

nique.

While the te
hni
al part of applying array

padding is one aspe
t, the more interesting

question is whi
h dimension(s) to pad by how

many elements in order to avoid unne
essary


a
he 
on
i
ts for a given array a

ess pat-

tern on a given 
a
he ar
hite
ture. Se
tion

2 presents a heuristi
 that su

essfully elimi-

nates spatial and temporal reuse 
on
i
ts. Its

e�e
t on runtime performan
e is demonstrated

by means of the PDE1 ben
hmark in Se
tion 3.

Se
tion 4 sket
hes related work while Se
tion

5 
on
ludes.

2 Padding Inferen
e

This se
tion presents a padding inferen
e al-

gorithm that identi�es spatial and temporal

reuse 
on
i
ts and 
omputes a ve
tor PAD

that spe
i�es the re
ommended padding in

ea
h dimension. A 
a
he 
on�guration is spe
-

i�ed as follows: let CS denote the 
a
he

size, CLS the 
a
he line size, both in ar-

ray elements, and CA the set asso
iativity.

We may then 
ompute the number of 
a
he

sets, NSET := CS=(CLS � CA). Moreover,

let SHP denote a the original shape of the ar-

ray under 
onsideration as a ve
tor. The array

a

ess pattern is represented as a set of array

referen
es. Ea
h array referen
e R

i

is 
hara
-

terized by two ve
tors, a stride ve
tor SV

i

and

an o�set ve
tor OV

i

, i.e. by an aÆne fun
tion

on ea
h dimension.

Array referen
es that 
annot be expressed

in this way, are 
onsidered irregular. Sin
e

it is rather unlikely that irregular array

referen
es systemati
ally generate 
a
he


on
i
ts, they 
an be ignored. Under the

same 
onsideration, the set of array refer-

en
es is partitioned into disjoint so-
alled


on
i
t groups. Ea
h 
on
i
t group 
ontains

referen
es with identi
al or similar stride

ve
tors as only these may systemati
ally

interfere with ea
h other. Two referen
es R

i

and R

j

belong to the same 
on
i
t group i�

ADDR(jSV

i

� SV

j

j; SHP + PAD) < CLS

where ADDR(ve
; shp) is a fun
tion that


omputes the o�set of ve
 in the un-

rolling of an array with shape shp, i.e.

P

n

k=0

(ve
[k℄ �

Q

n

l=k+1

shp[l℄) .

Note that n refers to the dimensionality of

the array and that a 
ontiguous, row-major

storage order is assumed as the default data

layout. The padding inferen
e itself may

then be applied separately for ea
h 
on
i
t

group. Within a 
on
i
t group stride ve
tors


an simply be ignored. All referen
es R

i

are

lexi
ographi
ally sorted with respe
t to their

o�set ve
tors OV

i

and multiple o

urren
es

are eliminated.

First, spatial reuse 
on
i
ts are addressed.

We start out with PAD :=

~

0, i.e. with no

padding. Then, for ea
h referen
e R

i

the o�-

set ve
tor OV

i

is 
onverted into a (s
alar) o�set

with respe
t to the array shape SHP extended

by the padding PAD inferred so far:

OFFSET

i

:= ADDR(OV

i

; SHP + PAD)

�ADDR(OV

0

; SHP + PAD)

For reasons of simpli
ity we don't want to deal

with negative o�sets; sin
e our interest is also

limited to relative 
a
he lo
ations, all o�sets

are shifted by the same 
onstant, i.e. by the

o�set determined for the �rst referen
e in lex-

i
ographi
al order, i.e. R

0

. With the shifted

o�sets at hand, we now determine the 
orre-

sponding 
a
he sets

SET

i

:= (OFFSET

i

=CLS) mod NSET.

For ea
h referen
e R

i

we 
ompute the number

NPSCFL

i

of potential spatial reuse 
on
i
ts

with other referen
es that are mapped to the

same 
a
he set. Two referen
es R

i

and R

j

po-

tentially 
on
i
t i�

(jOFFSET

i

�OFFSET

j

j � NSET � CLS)

^ ((jSET

i

� SET

j

j < 2

_ (jSET

i

� SET

j

j > NSET � 2))

In order to 
lassify two referen
es as non-


on
i
ting at least one unused 
a
he set in be-

tween is required. This additional bu�er is re-

quired sin
e we 
ompletely abstra
t from rel-

ative pla
ements of referen
es within a 
a
he

line. In a dire
t-mapped 
a
he, ea
h potential




on
i
t will a
tually result in a 
a
he 
on
i
t at

runtime. In general, a 
on
i
t o

urs whenever

the number of potential 
on
i
ts equals or ex-


eeds the 
a
he's set asso
iativity CA, i.e., the

number of spatial reuse 
on
i
ts is de�ned as

NSCFL

i

:=

max(0; NPSCFL

i

� CA+ 1).

For ea
h 
on
i
t the question is whether

padding might or might not alter the situation

and whi
h dimension of the array should be

padded by how many elements. Therefore, we

determine PADDIM := d+ 1 where d is the

outermost dimension with OV

i

[d℄ 6= OV

j

[d℄ for

any pair of 
on
i
ting array referen
es R

i

and

R

j

. In other words, we sele
t the outermost

dimension where padding may solve any 
on-


i
t. Eventually, the pading ve
tor PAD is

in
remented by 1 in dimension PADDIM and

the 
a
he behavior is re-evaluated. The entire

pro
ess is repeated until either all a
tual spa-

tial reuse 
on
i
ts have been solved or an upper

limit for padding has been rea
hed. The latter

is needed in order to keep the extra amount

of memory required for the representation of

a padded array within a

eptable bounds even

for pathologi
al 
ases.

With all spatial reuse 
on
i
ts being elim-

inated we may now fo
us on temporal reuse


on
i
ts. As a �rst step, for ea
h referen
e R

i

we determine if there is any 
han
e for tempo-

ral reuse from referen
e R

i+1

in the presen
e of

simple 
a
he 
apa
ity 
onstraints. This is the


ase i�

OFFSET

i+1

�OFFSET

i

< (NSET � 2) � CLS

Note here that all referen
es are sorted with

in
reasing o�sets. For ea
h pair of neigh-

boring referen
es R

i

and R

i+1

that might

bene�t from temporal reuse, we now 
om-

pute the number of potential temporal reuse


on
i
ts NPTCFL. An array referen
e R

j

,

j 6= i ^ j 6= i+ 1 represents a potential tem-

poral reuse 
on
i
t if it is mapped to a


a
he set "in between\ those of R

i

and R

i+1

,

i.e. (SET

i

< SET

j

) ^ (SET

j

< SET

i+1

).

In analogy to spatial reuse 
on
i
ts, the

term "potential\ is to be understood with re-

spe
t to set asso
iativity, i.e.

NTCFL

i

:=

max(0; NPTCFL

i

� CA+ 1).

Whenever potential 
on
i
ts turn into real 
on-


i
ts due to limited set asso
iativity, it must

again be determined whether array padding

might help and whi
h array dimension should

be used for padding. The basi
 idea is to se-

le
t a padding dimension that is suÆ
iently

small so that the relative positions of neigh-

boring referen
es with potential temporal reuse

remain untou
hed. However, it must be suÆ-


iently large so that padding alters the relative

positions between these and the 
orrespond-

ing 
on
i
ting referen
e. Su
h a dimension

may or may not exist. In the latter 
ase, the

temporal reuse 
on
i
t 
annot be solved. In

the former 
ase, however, the padding ve
tor

PAD is in
remented by 1 in the smallest suit-

able dimension and the temporal reuse is itera-

tively re-evaluated until all 
on
i
ts have been

solved or have been found unsolvable through

array padding or the prespe
i�ed upper limit

for padding amounts has been rea
hed.

3 Evaluation

Ea
h pro
essor of the SUN Ultra Enterprise

4000 used in the performan
e measurements

in Se
tion 1 is equipped with a 16KB L1 data


a
he and a 1MB L2 
a
he. Both are dire
t-

mapped and use 
a
he lines of 32 and 64 bytes,

respe
tively. The array padding inferen
e al-

gorithm outlined in Se
tion 2 is applied to the

PDE1 ben
hmark with respe
t to the L1 data


a
he. From an overall number of 31 prob-

lem sizes investigated, the inferen
e algorithm


hooses to pad 4 by a padding ve
tor of [0,2,0℄,

9 by [0,1,0℄, and 19 not to pad at all. For 5

problem sizes, the de
ision for padding is a re-

sult of analysing spatial as well as temporal

reuse 
on
i
ts; for all others the �nal padding

ve
tor has already been determined after han-

dling spatial reuse 
on
i
ts alone. Subsequent

appli
ation of the inferen
e algorithm with re-

spe
t to the L2 
a
he 
hara
teristi
s does not

yield additional padding requirements.

Fig. 2 shows the e�e
t of array padding on
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Figure 2: PDE1: average wall
lo
k exe
ution times per grid point for varying problem sizes with

and without impli
it appli
ation of array padding.

the runtime performan
e of the PDE1 ben
h-

mark; wall
lo
k exe
ution times per grid ele-

ment a
hieved with and without array padding


an dire
tly be 
ompared. Signi�
ant improve-

ments in runtime performan
e 
an be observed

whenever array padding a
tually is applied. In

parti
ular, for the problem sizes 64

3

and 256

3

average program runtimes per grid element 
an

be redu
ed by 56% from 162nse
 to 70nse


and by 68% from 254nse
 to 81nse
, respe
-

tively. Furthermore, the varian
e in runtimes

is de
reased to a fa
tor of 1.8 between the best

and the worst performing problem size. When


ompared to the original fa
tor of 5.6 without

padding enabled, program runtimes are mu
h

more predi
table.

4 Related Work

In high-level fun
tional programming lan-

guages, lists rather than arrays form the pre-

dominant data stru
ture. The most prominent

ex
eption is the language Sisal [10℄. However,

Sisal represents arrays as ve
tors of ve
tors

rather than as 
ontiguous data whi
h renders

array padding useless. So, we are not aware of

any similar optimization te
hnique in this area.

However, in high-performan
e 
omputing,

mostly based on Fortran, data lo
ality has

long been identi�ed as an important issue [21℄.

Mu
h resear
h has been fo
ussed on program

transformations that reorder the sequen
e of


omputations in loop nestings [4, 17, 11℄. Loop

transformations su
h as permutation, reversal,

or inter
hange, are used to adjust the itera-

tion order to a given array data layout in or-

der to a
hieve unit stride memory a

esses in

inner loops and, hen
e, to exploit spatial lo
al-

ity. Loop tiling, also 
alled loop blo
king, is a


ombination of skewing and subsequent permu-

tation. It seeks to improve temporal lo
ality in

loop nestings by redu
ing the iteration distan
e

between subsequent a

esses to the same array

element [8, 3℄. Moreover, loop fusion allows to

exploit lo
ality of referen
e a
ross single loop

nestings [9℄.

Often, superior 
a
he performan
e 
an be

a
hieved if both the iteration order as well

as the memory layout are subje
t to 
ompiler

transformations. Examples are the 
ombina-

tion of array transposition with loop permuta-

tion [2℄ or that of array padding with tiling in

order to in
rease tile sizes and thus redu
e the



additional overhead in
i
ted by tiled 
ode [14℄.

While these approa
hes mostly fo
us on 
apa
-

ity misses, 
on
i
t misses due to limited set

asso
iativity have been identi�ed as another

important sour
e of performan
e degradation

[20℄. Their quanti�
ation has been a
hieved

by 
ounting the number of integer solutions to

so-
alled 
a
he miss equations, i.e. linear Dio-

phantine equations that spe
ify the 
a
he line

to whi
h an array referen
e in a loop will be

mapped [5℄. Due to the 
omplexity and ex-

pense of su
h a

urate investigations, simpler

heuristi
s have been proposed [15, 16℄. The

padding inferen
e algorithm presented in Se
-

tion 2 extends this work with respe
t to self-

interferen
e in several aspe
ts. It does not

assume a dire
t-mapped 
a
he but expli
itly

supports set-asso
iative 
a
hes. In addition

to spatial reuse 
on
i
ts, temporal reuse 
on-


i
ts are also taken into a

ount. Furthermore,

padding 
an be performed in any dimension

and even in multiple dimensions; an additional

algorithm sele
ts the most appropriate padding

dimension for ea
h 
on
i
t to be solved.

5 Con
lusion

This paper presents an algorithm that su

ess-

fully eliminates spatial and temporal reuse 
on-


i
ts in Sa
 programs by impli
itly applying

array padding where ne
essary. Runtime per-

forman
e investigations on the PDE1 ben
h-

mark show that this optimization te
hnique

allows to substantially redu
e program run-

times for various problem sizes and, moreover,

a
hieves mu
h more 
onsistent runtime perfor-

man
e over a large range of problem sizes.
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