Array Padding in the Functional Language SAC

Clemens Grelck
Department of Computer Science
University of Kiel
24098 Kiel, Germany

Abstract SAc is a functional array processing
language that tries to combine generic, high-level
program specifications with efficient runtime behav-
ior. Being particularly designed for numerical ap-
plications, runtime performance critically depends
on the effective utilization of the memory hierar-
chy. For many programs, however, it can be 0b-
served that the achieved performance significantly
changes with small variations in the problem size.

Array padding is a well-known optimization tech-
nique that adjusts the data layout of arrays in order
to make better usage of caches. The paper presents
an algorithm that derives a customized data layout
from an array access pattern and a cache specifica-
tion. Cache phenomena such as spatial and tempo-
ral reuse are taken into account as well as different
cache architectures. The effectiveness is demon-
strated by investigations on the runtime perfor-
mance of the PDE1 benchmark on a shared memory
multiprocessor.

Keywords: array padding, spatial locality, tempo-
ral locality, compiler optimization, functional pro-
gramming language, SAC

1 Introduction

SAC is a functional array processing language
that tries to combine generic, high-level pro-
gram specifications with efficient runtime be-
havior [19, 18]. Implicit compiler support
allows to derive multithreaded host machine
code that executes in parallel on shared mem-
ory multiprocessors [6]. Being designed with
numerical applications in mind, the effective
utilization of the memory hierarchy plays a key
role in achieving good performance [13]. In the

context of shared memory architectures, this
is particularly important: failure to retrieve
data from one of the processor private caches
not only results in a slow main memory ac-
cess — depending on the system architecture
it also increases contention on the memory bus
with the consequence of further delays on bus-
based systems or may cause data to be fetched
from a remote processing site via the intercon-
nection network in the case of so-called scal-
able shared memory systems. Moreover, per-
formance degradation due to poor cache uti-
lization grows with increasing numbers of pro-
cessors involved thus limiting scalability.

It is well-known that small changes in the
problem size often have a significant impact
on the runtime performance of numerical ap-
plication programs. We have chosen the well-
known benchmark PDE1 as an example in
order to investigate and quantify this phe-
nomenon. PDEL implements red/black suc-
cessive over-relaxation on 3-dimensional grids.
Fig. 1 shows average wallclock execution times
per inner grid point using 4 processors on a
SUN Ultra Enterprise 4000. The egde length
of the cubic grid is uniformly varied from 24
til 280 in steps of 8. Using double precision
floating point numbers this involves array sizes
between 108KB and 168MB. It can be observed
that the time required to compute a single grid
element differs from 45nsec for the best per-
forming problem size up to 254nsec for the
worst performing one; this means a factor of
5.6. Since the executed code itself remains
unchanged, these variations in runtime perfor-
mance can only be attributed to different de-
grees of cache utilization.

250

225 -

200

175

150

125 |

100

execution time per inner grid point in nsec

75

24 40 56 72

88 104 120 136 152 168 184 200 216 232 248 264 280
problem size

Figure 1: PDEL: average wallclock execution times per grid point for varying problem sizes.

Two hardware characteristics of caches are
mainly respousible for the varying performance
observed: their organization in cache lines and
their limited set associativity [7]. In conjunc-
tion, they make caches extremely sensitive to
the data layout when regularly structured data
is accessed in regular patterns both of which is
typical for numerical codes involving large ar-
rays. Many different effects have been identi-
fied [20]; for this paper, however, we focus on
so-called self-interference, i.e. cache conflicts
that arise from multiple references to a single
array. A spatial reuse conflict occurs whenever
not all array elements accessed in one loop in-
stance can simultaneously be held in the cache.
The number of different array elements that
are mapped to the same cache set exceeds the
cache’s set associativity and, hence, cache lines
are flushed from the cache before spatial reuse
can be realized. A temporal reuse conflict oc-
curs when potential reuse between two refer-
ences to the same array element cannot be ex-
ploited because another array reference inter-
feres and causes the first one to be flushed from
the cache before a possible reuse has occurred.
Avoiding such conflicts is mandatory in order
to achieve good performance [12].

The relative placement of array references in

a cache can be influenced by modifying the ar-
ray data layout. So-called array padding adds
dummy elements to an array in one or the other
inner dimension [1], e.g. an array whose orig-
inal shape is [100,100], may be transformed
into an array of shape [100,102] adding two
columns of dummy elements. Applying ar-
ray padding manually, however, is hardly ef-
ficient as it requires both a lot of effort and
expert knowledge on the programmer’s side; it
increases program complexity and makes pro-
grams less readable and error-prone. More-
over, array padding renders program specifica-
tions architecture-dependent since each prob-
lem size and cache configuration typically re-
quires a different amount of padding.
However, as a compiler optimization array
padding might be well-suited to achieve consis-
tent performance over a wide range of problem
sizes and cache architectures. Unfortunately,
things are not as simple in low-level languages
such as C or FORTRAN. Since these languages’
semantics guarantee a certain (unpadded) data
layout, thorough program analysis is required
in order to prove that padding does not alter
the meaning of a program. Here, the design
of high-level languages like SAC pays off. Since
these completely abstract from a concrete data

layout, they are free to choose the most suit-
able one with respect to access patterns and
hardware characteristics. This includes array
padding as an additional optimization tech-
nique.

While the technical part of applying array
padding is one aspect, the more interesting
question is which dimension(s) to pad by how
many elements in order to avoid unnecessary
cache conflicts for a given array access pat-
tern on a given cache architecture. Section
2 presents a heuristic that successfully elimi-
nates spatial and temporal reuse conflicts. Its
effect on runtime performance is demonstrated
by means of the PDE1 benchmark in Section 3.
Section 4 sketches related work while Section
5 concludes.

2 Padding Inference

This section presents a padding inference al-
gorithm that identifies spatial and temporal
reuse conflicts and computes a vector PAD
that specifies the recommended padding in
each dimension. A cache configuration is spec-
ified as follows: let CS denote the cache
size, C'LS the cache line size, both in ar-
ray elements, and CA the set associativity.
We may then compute the number of cache
sets, NSET :=CS/(CLS « CA). Moreover,
let SHP denote a the original shape of the ar-
ray under consideration as a vector. The array
access pattern is represented as a set of array
references. Each array reference R; is charac-
terized by two vectors, a stride vector SV; and
an offset vector OV}, i.e. by an affine function
on each dimension.

Array references that cannot be expressed
in this way, are considered irregular. Since
it is rather unlikely that irregular array
references systematically generate cache
conflicts, they can be ignored. Under the
same consideration, the set of array refer-
ences is partitioned into disjoint so-called
conflict groups. Each conflict group contains
references with identical or similar stride
vectors as only these may systematically

interfere with each other. Two references R;
and R; belong to the same conflict group iff
ADDR(|SV; = SV;|,SHP + PAD) < CLS
where ADDR(vec, shp) is a function that
computes the offset of wec in the un-
rolling of an array with shape shp, i.e.
Y _o(veclk] * [Tgsr shpll)

Note that n refers to the dimensionality of
the array and that a contiguous, row-major
storage order is assumed as the default data
layout. The padding inference itself may
then be applied separately for each conflict
group. Within a conflict group stride vectors
can simply be ignored. All references R; are
lexicographically sorted with respect to their
offset vectors OV; and multiple occurrences

are eliminated.

First, spatial reuse conflicts are addressed.
We start out with PAD :=0, ie. with no
padding. Then, for each reference R; the off-
set vector OVj is converted into a (scalar) offset
with respect to the array shape SH P extended
by the padding PAD inferred so far:

OFFSET; := ADDR(OV;, SHP + PAD)

—ADDR(OVy, SHP + PAD)

For reasons of simplicity we don’t want to deal
with negative offsets; since our interest is also
limited to relative cache locations, all offsets
are shifted by the same constant, i.e. by the
offset determined for the first reference in lex-
icographical order, i.e. Ry. With the shifted
offsets at hand, we now determine the corre-
sponding cache sets

SET; := (OFFSET;/CLS) mod NSET.
For each reference R; we compute the number
NPSCFL; of potential spatial reuse conflicts
with other references that are mapped to the
same cache set. Two references R; and R; po-
tentially conflict iff
(|OFFSET; — OFFSET;| < NSET x CLS)
AN ((|]SET; — SET}| < 2

V (|SET; — SETj| > NSET - 2))
In order to classify two references as non-
conflicting at least one unused cache set in be-
tween is required. This additional buffer is re-
quired since we completely abstract from rel-
ative placements of references within a cache
line. In a direct-mapped cache, each potential

conflict will actually result in a cache conflict at
runtime. In general, a conflict occurs whenever
the number of potential conflicts equals or ex-
ceeds the cache’s set associativity C'A, i.e., the
number of spatial reuse conflicts is defined as

NSCFL; :=

max(0, NPSCFL; — CA+1).

For each conflict the question is whether
padding might or might not alter the situation
and which dimension of the array should be
padded by how many elements. Therefore, we
determine PADDIM := d+ 1 where d is the
outermost dimension with OV;[d] # OV}[d] for
any pair of conflicting array references R; and
Rj. In other words, we select the outermost
dimension where padding may solve any con-
flict. Eventually, the pading vector PAD is
incremented by 1 in dimension PADDIM and
the cache behavior is re-evaluated. The entire
process is repeated until either all actual spa-
tial reuse conflicts have been solved or an upper
limit for padding has been reached. The latter
is needed in order to keep the extra amount
of memory required for the representation of
a padded array within acceptable bounds even
for pathological cases.

With all spatial reuse conflicts being elim-
inated we may now focus on temporal reuse
conflicts. As a first step, for each reference R;
we determine if there is any chance for tempo-
ral reuse from reference R;; 1 in the presence of
simple cache capacity constraints. This is the
case iff

OFFSET; 1 — OFFSET;

< (NSET —-2)+«CLS

Note here that all references are sorted with
increasing offsets. For each pair of neigh-
boring references R; and R;y; that might
benefit from temporal reuse, we now com-
pute the number of potential temporal reuse
conflicts NPTCFL. An array reference R;,
j#1 N j#1i+ 1 represents a potential tem-
poral reuse conflict if it is mapped to a
cache set ”in between“ those of R; and R;41,
ie. (SET; < SET;) N (SET; < SET;44).

In analogy to spatial reuse conflicts, the
term ”potential“ is to be understood with re-
spect to set associativity, i.e.

NTCFL; =
max(0, NPTCFL; — CA+1).

Whenever potential conflicts turn into real con-
flicts due to limited set associativity, it must
again be determined whether array padding
might help and which array dimension should
be used for padding. The basic idea is to se-
lect a padding dimension that is sufficiently
small so that the relative positions of neigh-
boring references with potential temporal reuse
remain untouched. However, it must be suffi-
ciently large so that padding alters the relative
positions between these and the correspond-
ing conflicting reference. Such a dimension
may or may not exist. In the latter case, the
temporal reuse conflict cannot be solved. In
the former case, however, the padding vector
PAD is incremented by 1 in the smallest suit-
able dimension and the temporal reuse is itera-
tively re-evaluated until all conflicts have been
solved or have been found unsolvable through
array padding or the prespecified upper limit
for padding amounts has been reached.

3 Evaluation

Each processor of the SUN Ultra Enterprise
4000 used in the performance measurements
in Section 1 is equipped with a 16KB L1 data
cache and a 1MB L2 cache. Both are direct-
mapped and use cache lines of 32 and 64 bytes,
respectively. The array padding inference al-
gorithm outlined in Section 2 is applied to the
PDE1 benchmark with respect to the L1 data
cache. From an overall number of 31 prob-
lem sizes investigated, the inference algorithm
chooses to pad 4 by a padding vector of [0,2,0],
9 by [0,1,0], and 19 not to pad at all. For 5
problem sizes, the decision for padding is a re-
sult of analysing spatial as well as temporal
reuse conflicts; for all others the final padding
vector has already been determined after han-
dling spatial reuse conflicts alone. Subsequent
application of the inference algorithm with re-
spect to the L2 cache characteristics does not
yield additional padding requirements.

Fig. 2 shows the effect of array padding on

250

without padding —*—
225 1 with padding ---&---

200
175
150
125 |

100

execution time per inner grid point in nsec

75

24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 264 280

problem size

Figure 2: PDE1: average wallclock execution times per grid point for varying problem sizes with

and without implicit application of array padding.

the runtime performance of the PDE1 bench-
mark; wallclock execution times per grid ele-
ment achieved with and without array padding
can directly be compared. Significant improve-
ments in runtime performance can be observed
whenever array padding actually is applied. In
particular, for the problem sizes 643 and 2563
average program runtimes per grid element can
be reduced by 56% from 162nsec to 70Onsec
and by 68% from 254nsec to 8lnsec, respec-
tively. Furthermore, the variance in runtimes
is decreased to a factor of 1.8 between the best
and the worst performing problem size. When
compared to the original factor of 5.6 without
padding enabled, program runtimes are much
more predictable.

4 Related Work

In high-level functional programming lan-
guages, lists rather than arrays form the pre-
dominant data structure. The most prominent
exception is the language SISAL [10]. However,
SISAL represents arrays as vectors of vectors
rather than as contiguous data which renders
array padding useless. So, we are not aware of

any similar optimization technique in this area.

However, in high-performance computing,
mostly based on FORTRAN, data locality has
long been identified as an important issue [21].
Much research has been focussed on program
transformations that reorder the sequence of
computations in loop nestings [4, 17, 11]. Loop
transformations such as permutation, reversal,
or interchange, are used to adjust the itera-
tion order to a given array data layout in or-
der to achieve unit stride memory accesses in
inner loops and, hence, to exploit spatial local-
ity. Loop tiling, also called loop blocking, is a
combination of skewing and subsequent permu-
tation. It seeks to improve temporal locality in
loop nestings by reducing the iteration distance
between subsequent accesses to the same array
element [8, 3]. Moreover, loop fusion allows to
exploit locality of reference across single loop
nestings [9].

Often, superior cache performance can be
achieved if both the iteration order as well
as the memory layout are subject to compiler
transformations. Examples are the combina-
tion of array transposition with loop permuta-
tion [2] or that of array padding with tiling in
order to increase tile sizes and thus reduce the

additional overhead inflicted by tiled code [14].
While these approaches mostly focus on capac-
ity misses, conflict misses due to limited set
associativity have been identified as another
important source of performance degradation
[20]. Their quantification has been achieved
by counting the number of integer solutions to
so-called cache miss equations, i.e. linear Dio-
phantine equations that specify the cache line
to which an array reference in a loop will be
mapped [5]. Due to the complexity and ex-
pense of such accurate investigations, simpler
heuristics have been proposed [15, 16]. The
padding inference algorithm presented in Sec-
tion 2 extends this work with respect to self-
interference in several aspects. It does not
assume a direct-mapped cache but explicitly
supports set-associative caches. In addition
to spatial reuse conflicts, temporal reuse con-
flicts are also taken into account. Furthermore,
padding can be performed in any dimension
and even in multiple dimensions; an additional
algorithm selects the most appropriate padding
dimension for each conflict to be solved.

5 Conclusion

This paper presents an algorithm that success-
fully eliminates spatial and temporal reuse con-
flicts in SAC programs by implicitly applying
array padding where necessary. Runtime per-
formance investigations on the PDE1 bench-
mark show that this optimization technique
allows to substantially reduce program run-
times for various problem sizes and, moreover,
achieves much more consistent runtime perfor-
mance over a large range of problem sizes.

References

[1] D.F. Bacon, S.L. Graham, and O.J.
Sharp. Compiler Transformations for
High-Performance Computing. ACM

Computing Surveys, 26(4):345-420, 1994.

[2] M. Cierniak and W. Li. Unifying Data and
Control Transformations for Distributed

Shared-Memory Machines. In Proceed-
ings of the ACM SIGPLAN Conference
on Programming Design and Implemen-
tation (PLDI’95), La Jolla, California,
USA, 1995.

S. Coleman and K. McKinley. Tile Size
Selection Using Cache Organization and
Data Layout. In Proceedings of the
ACM SIGPLAN Conference on Program-
ming Language Design and Implemen-
tation (PLDI’95), La Jolla, California,
pages 279-290, 1995.

D. Gannon, W. Jalby, and K. Gallivan.
Strategies for Cache and Local Memory
Management by Global Program Trans-
formation. Journal of Parallel and Dis-
tributed Computing, 5(5):587-616, 1988.

S. Ghosh, M. Martonosi, and S. Malik.
Cache Miss Equations: An Analytical
Representation of Cache Misses. In Pro-
ceedings of the ACM International Con-
ference on Supercomputing (1CS’97), Vi-
enna, Austria, 1997.

C. Grelck. Shared Memory Multiproces-
sor Support for SAC. In K. Hammond,
T. Davie, and C. Clack, editors, Proceed-
ings of the 10th International Workshop
on the Implementation of Functional Lan-
guages (IFL’98), London, UK, selected
papers, volume 1595 of Lecture Notes in
Computer Science, pages 38-54. Springer-
Verlag, 1999. ISBN 3-540-66229-4.

J. L. Hennessy and D. A. Patterson. Com-
puter Architecture: A Quantitative Ap-
proach, Second Edition. Morgan Kauf-
mann Publishers, 1995. ISBN 1-55860-
329-8.

M.S. Lam, E.E. Rothberg, and M.E. Wolf.
The Cache Performance of Blocked Al-
gorithms. In Proceedings of the Fourth
International Conference on Architectural
Support for Programming Languages and
Operating Systems, Palo Alto, California,
pages 63-74, 1991.

[9]

[11]

[13]

[14]

N. Manjikian and T.S. Abdelrahman. Fu-
sion of Loops for Parallelism and Local-
ity. IEEE Transactions on Parallel and
Distributed Systems, 8(2):193-209, 1997.

J.R. McGraw, S.K. Skedzielewski, S.J. Al-
lan, R.R. Oldehoeft, et al. SISAL: Streams
and Iteration in a Single Assignment Lan-
guage: Reference Manual Version 1.2. M
146, Lawrence Livermore National Labo-
ratory, LLNL, Livermore California, 1985.

K. McKinley, S. Carr, and C.-W. Tseng.
Improving Data Locality with Loop
Transformations. ACM Transactions

on Programming Languages and Systems,
18(4):424-453, 1996.

K. McKinley and O. Temam. A Quan-
tative Analysis of Loop Nest Locality.
In Proceedings of the 8th International
Conference on Architectural Support for
Programming Languages and Operating
Systems (ASPLOS-VIII), Boston, Mas-
sachusetts, USA, 1996.

T. Mowry, M. Lam, and A. Gupta. Design
and Evaluation of a Compiler Algorithm
for Prefetching. In Proceedings of the 5th
International Conference on Architectural
Support for Programming Languages and
Operating Systems (ASPLOS-V), Boston,
Massachusetts, USA, pages 62-73, 1992.

P.R. Panda, H. Nakamura, N.D. Dutt,
and A.Nicolau. A Data Alignment
Technique for Improving Cache Perfor-
mance. In Proceedings of the International
Conference on Computer Design VLSI
in Computers and Processors, Austin,
Tezas, USA, pages 587-592. IEEE Com-
puter Society Press, 1997.

G. Rivera and C.-W. Tseng. Data
Transformations for Eliminating Conflict
Misses. In Proc. Conference on Program-
ming Language Design and Implementa-
tion (PLDI’98), Montréal, Canada, pages
38-49. ACM SIGPLAN Notices, 33(5),
1998.

[16]

[17]

[18]

[19]

[20]

[21]

G. Rivera and C.-W. Tseng. Eliminating
Conflict Misses for High Performance Ar-
chitectures. In Proc. ACM International
Conference on Supercomputing (1CS’98),
Melbourne, Australia, 1998.

V. Sarkar and R. Thekkath. A General
Framework for Iteration-Reordering Loop
Transformations. In Proceedings of the
ACM SIGPLAN Conference on Program-
ming Language Design and Implementa-
tion (PLDI’92), San Francisco, Califor-
nia, USA, pages 175-187, 1992.

S.-B. Scholz. On Defining Application-
Specific High-Level Array Operations by
Means of Shape-Invariant Programming
Facilities. In S. Picchi and M. Micocci, ed-
itors, Proceedings of the Array Processing
Language Conference (APL’98), Rome,
Italy, pages 40-45. ACM Press, 1998.

S.-B. Scholz. A Case Study: Effects of
WITH-Loop Folding on the NAS Mgrid
Benchmark in SAC. In K. Hammond,
T. Davie, and C. Clack, editors, Pro-
ceedings of the 10th International Work-
shop on the Implementation of Func-
tional Languages (IFL’98), London, UK,
selected papers, volume 1595 of Lecture
Notes in Computer Science, pages 216—
228. Springer-Verlag, 1999. ISBN 3-540-
66229-4.

O. Temam, C. Fricker, and W. Jalby.
Cache Interference Phenomena. In Pro-
ceedings of the Sigmetrics Conference on
Measurement and Modeling of Computer

Systems, Nashuville, Tennessee, pages 261—
271. ACM Press, 1994.

M. E. Wolf and M. S. Lam. A Data
Locality Optimizing Algorithm. In Pro-
ceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design
and Implementation (PLDI’91), pages 30—
44, 1991.

