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Abstrat Sa is a funtional array proessing

language that tries to ombine generi, high-level

program spei�ations with eÆient runtime behav-

ior. Being partiularly designed for numerial ap-

pliations, runtime performane ritially depends

on the e�etive utilization of the memory hierar-

hy. For many programs, however, it an be ob-

served that the ahieved performane signi�antly

hanges with small variations in the problem size.

Array padding is a well-known optimization teh-

nique that adjusts the data layout of arrays in order

to make better usage of ahes. The paper presents

an algorithm that derives a ustomized data layout

from an array aess pattern and a ahe spei�a-

tion. Cahe phenomena suh as spatial and tempo-

ral reuse are taken into aount as well as di�erent

ahe arhitetures. The e�etiveness is demon-

strated by investigations on the runtime perfor-

mane of the PDE1 benhmark on a shared memory

multiproessor.

Keywords: array padding, spatial loality, tempo-

ral loality, ompiler optimization, funtional pro-

gramming language, SAC

1 Introdution

Sa is a funtional array proessing language

that tries to ombine generi, high-level pro-

gram spei�ations with eÆient runtime be-

havior [19, 18℄. Impliit ompiler support

allows to derive multithreaded host mahine

ode that exeutes in parallel on shared mem-

ory multiproessors [6℄. Being designed with

numerial appliations in mind, the e�etive

utilization of the memory hierarhy plays a key

role in ahieving good performane [13℄. In the

ontext of shared memory arhitetures, this

is partiularly important: failure to retrieve

data from one of the proessor private ahes

not only results in a slow main memory a-

ess | depending on the system arhiteture

it also inreases ontention on the memory bus

with the onsequene of further delays on bus-

based systems or may ause data to be fethed

from a remote proessing site via the interon-

netion network in the ase of so-alled sal-

able shared memory systems. Moreover, per-

formane degradation due to poor ahe uti-

lization grows with inreasing numbers of pro-

essors involved thus limiting salability.

It is well-known that small hanges in the

problem size often have a signi�ant impat

on the runtime performane of numerial ap-

pliation programs. We have hosen the well-

known benhmark PDE1 as an example in

order to investigate and quantify this phe-

nomenon. PDE1 implements red/blak su-

essive over-relaxation on 3-dimensional grids.

Fig. 1 shows average walllok exeution times

per inner grid point using 4 proessors on a

SUN Ultra Enterprise 4000. The egde length

of the ubi grid is uniformly varied from 24

til 280 in steps of 8. Using double preision

oating point numbers this involves array sizes

between 108KB and 168MB. It an be observed

that the time required to ompute a single grid

element di�ers from 45nse for the best per-

forming problem size up to 254nse for the

worst performing one; this means a fator of

5.6. Sine the exeuted ode itself remains

unhanged, these variations in runtime perfor-

mane an only be attributed to di�erent de-

grees of ahe utilization.
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Figure 1: PDE1: average walllok exeution times per grid point for varying problem sizes.

Two hardware harateristis of ahes are

mainly responsible for the varying performane

observed: their organization in ahe lines and

their limited set assoiativity [7℄. In onjun-

tion, they make ahes extremely sensitive to

the data layout when regularly strutured data

is aessed in regular patterns both of whih is

typial for numerial odes involving large ar-

rays. Many di�erent e�ets have been identi-

�ed [20℄; for this paper, however, we fous on

so-alled self-interferene, i.e. ahe onits

that arise from multiple referenes to a single

array. A spatial reuse onit ours whenever

not all array elements aessed in one loop in-

stane an simultaneously be held in the ahe.

The number of di�erent array elements that

are mapped to the same ahe set exeeds the

ahe's set assoiativity and, hene, ahe lines

are ushed from the ahe before spatial reuse

an be realized. A temporal reuse onit o-

urs when potential reuse between two refer-

enes to the same array element annot be ex-

ploited beause another array referene inter-

feres and auses the �rst one to be ushed from

the ahe before a possible reuse has ourred.

Avoiding suh onits is mandatory in order

to ahieve good performane [12℄.

The relative plaement of array referenes in

a ahe an be inuened by modifying the ar-

ray data layout. So-alled array padding adds

dummy elements to an array in one or the other

inner dimension [1℄, e.g. an array whose orig-

inal shape is [100,100℄, may be transformed

into an array of shape [100,102℄ adding two

olumns of dummy elements. Applying ar-

ray padding manually, however, is hardly ef-

�ient as it requires both a lot of e�ort and

expert knowledge on the programmer's side; it

inreases program omplexity and makes pro-

grams less readable and error-prone. More-

over, array padding renders program spei�a-

tions arhiteture-dependent sine eah prob-

lem size and ahe on�guration typially re-

quires a di�erent amount of padding.

However, as a ompiler optimization array

padding might be well-suited to ahieve onsis-

tent performane over a wide range of problem

sizes and ahe arhitetures. Unfortunately,

things are not as simple in low-level languages

suh as C or Fortran. Sine these languages'

semantis guarantee a ertain (unpadded) data

layout, thorough program analysis is required

in order to prove that padding does not alter

the meaning of a program. Here, the design

of high-level languages like Sa pays o�. Sine

these ompletely abstrat from a onrete data



layout, they are free to hoose the most suit-

able one with respet to aess patterns and

hardware harateristis. This inludes array

padding as an additional optimization teh-

nique.

While the tehnial part of applying array

padding is one aspet, the more interesting

question is whih dimension(s) to pad by how

many elements in order to avoid unneessary

ahe onits for a given array aess pat-

tern on a given ahe arhiteture. Setion

2 presents a heuristi that suessfully elimi-

nates spatial and temporal reuse onits. Its

e�et on runtime performane is demonstrated

by means of the PDE1 benhmark in Setion 3.

Setion 4 skethes related work while Setion

5 onludes.

2 Padding Inferene

This setion presents a padding inferene al-

gorithm that identi�es spatial and temporal

reuse onits and omputes a vetor PAD

that spei�es the reommended padding in

eah dimension. A ahe on�guration is spe-

i�ed as follows: let CS denote the ahe

size, CLS the ahe line size, both in ar-

ray elements, and CA the set assoiativity.

We may then ompute the number of ahe

sets, NSET := CS=(CLS � CA). Moreover,

let SHP denote a the original shape of the ar-

ray under onsideration as a vetor. The array

aess pattern is represented as a set of array

referenes. Eah array referene R

i

is hara-

terized by two vetors, a stride vetor SV

i

and

an o�set vetor OV

i

, i.e. by an aÆne funtion

on eah dimension.

Array referenes that annot be expressed

in this way, are onsidered irregular. Sine

it is rather unlikely that irregular array

referenes systematially generate ahe

onits, they an be ignored. Under the

same onsideration, the set of array refer-

enes is partitioned into disjoint so-alled

onit groups. Eah onit group ontains

referenes with idential or similar stride

vetors as only these may systematially

interfere with eah other. Two referenes R

i

and R

j

belong to the same onit group i�

ADDR(jSV

i

� SV

j

j; SHP + PAD) < CLS

where ADDR(ve; shp) is a funtion that

omputes the o�set of ve in the un-

rolling of an array with shape shp, i.e.

P

n

k=0

(ve[k℄ �

Q

n

l=k+1

shp[l℄) .

Note that n refers to the dimensionality of

the array and that a ontiguous, row-major

storage order is assumed as the default data

layout. The padding inferene itself may

then be applied separately for eah onit

group. Within a onit group stride vetors

an simply be ignored. All referenes R

i

are

lexiographially sorted with respet to their

o�set vetors OV

i

and multiple ourrenes

are eliminated.

First, spatial reuse onits are addressed.

We start out with PAD :=

~

0, i.e. with no

padding. Then, for eah referene R

i

the o�-

set vetor OV

i

is onverted into a (salar) o�set

with respet to the array shape SHP extended

by the padding PAD inferred so far:

OFFSET

i

:= ADDR(OV

i

; SHP + PAD)

�ADDR(OV

0

; SHP + PAD)

For reasons of simpliity we don't want to deal

with negative o�sets; sine our interest is also

limited to relative ahe loations, all o�sets

are shifted by the same onstant, i.e. by the

o�set determined for the �rst referene in lex-

iographial order, i.e. R

0

. With the shifted

o�sets at hand, we now determine the orre-

sponding ahe sets

SET

i

:= (OFFSET

i

=CLS) mod NSET.

For eah referene R

i

we ompute the number

NPSCFL

i

of potential spatial reuse onits

with other referenes that are mapped to the

same ahe set. Two referenes R

i

and R

j

po-

tentially onit i�

(jOFFSET

i

�OFFSET

j

j � NSET � CLS)

^ ((jSET

i

� SET

j

j < 2

_ (jSET

i

� SET

j

j > NSET � 2))

In order to lassify two referenes as non-

oniting at least one unused ahe set in be-

tween is required. This additional bu�er is re-

quired sine we ompletely abstrat from rel-

ative plaements of referenes within a ahe

line. In a diret-mapped ahe, eah potential



onit will atually result in a ahe onit at

runtime. In general, a onit ours whenever

the number of potential onits equals or ex-

eeds the ahe's set assoiativity CA, i.e., the

number of spatial reuse onits is de�ned as

NSCFL

i

:=

max(0; NPSCFL

i

� CA+ 1).

For eah onit the question is whether

padding might or might not alter the situation

and whih dimension of the array should be

padded by how many elements. Therefore, we

determine PADDIM := d+ 1 where d is the

outermost dimension with OV

i

[d℄ 6= OV

j

[d℄ for

any pair of oniting array referenes R

i

and

R

j

. In other words, we selet the outermost

dimension where padding may solve any on-

it. Eventually, the pading vetor PAD is

inremented by 1 in dimension PADDIM and

the ahe behavior is re-evaluated. The entire

proess is repeated until either all atual spa-

tial reuse onits have been solved or an upper

limit for padding has been reahed. The latter

is needed in order to keep the extra amount

of memory required for the representation of

a padded array within aeptable bounds even

for pathologial ases.

With all spatial reuse onits being elim-

inated we may now fous on temporal reuse

onits. As a �rst step, for eah referene R

i

we determine if there is any hane for tempo-

ral reuse from referene R

i+1

in the presene of

simple ahe apaity onstraints. This is the

ase i�

OFFSET

i+1

�OFFSET

i

< (NSET � 2) � CLS

Note here that all referenes are sorted with

inreasing o�sets. For eah pair of neigh-

boring referenes R

i

and R

i+1

that might

bene�t from temporal reuse, we now om-

pute the number of potential temporal reuse

onits NPTCFL. An array referene R

j

,

j 6= i ^ j 6= i+ 1 represents a potential tem-

poral reuse onit if it is mapped to a

ahe set "in between\ those of R

i

and R

i+1

,

i.e. (SET

i

< SET

j

) ^ (SET

j

< SET

i+1

).

In analogy to spatial reuse onits, the

term "potential\ is to be understood with re-

spet to set assoiativity, i.e.

NTCFL

i

:=

max(0; NPTCFL

i

� CA+ 1).

Whenever potential onits turn into real on-

its due to limited set assoiativity, it must

again be determined whether array padding

might help and whih array dimension should

be used for padding. The basi idea is to se-

let a padding dimension that is suÆiently

small so that the relative positions of neigh-

boring referenes with potential temporal reuse

remain untouhed. However, it must be suÆ-

iently large so that padding alters the relative

positions between these and the orrespond-

ing oniting referene. Suh a dimension

may or may not exist. In the latter ase, the

temporal reuse onit annot be solved. In

the former ase, however, the padding vetor

PAD is inremented by 1 in the smallest suit-

able dimension and the temporal reuse is itera-

tively re-evaluated until all onits have been

solved or have been found unsolvable through

array padding or the prespei�ed upper limit

for padding amounts has been reahed.

3 Evaluation

Eah proessor of the SUN Ultra Enterprise

4000 used in the performane measurements

in Setion 1 is equipped with a 16KB L1 data

ahe and a 1MB L2 ahe. Both are diret-

mapped and use ahe lines of 32 and 64 bytes,

respetively. The array padding inferene al-

gorithm outlined in Setion 2 is applied to the

PDE1 benhmark with respet to the L1 data

ahe. From an overall number of 31 prob-

lem sizes investigated, the inferene algorithm

hooses to pad 4 by a padding vetor of [0,2,0℄,

9 by [0,1,0℄, and 19 not to pad at all. For 5

problem sizes, the deision for padding is a re-

sult of analysing spatial as well as temporal

reuse onits; for all others the �nal padding

vetor has already been determined after han-

dling spatial reuse onits alone. Subsequent

appliation of the inferene algorithm with re-

spet to the L2 ahe harateristis does not

yield additional padding requirements.

Fig. 2 shows the e�et of array padding on
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Figure 2: PDE1: average walllok exeution times per grid point for varying problem sizes with

and without impliit appliation of array padding.

the runtime performane of the PDE1 benh-

mark; walllok exeution times per grid ele-

ment ahieved with and without array padding

an diretly be ompared. Signi�ant improve-

ments in runtime performane an be observed

whenever array padding atually is applied. In

partiular, for the problem sizes 64

3

and 256

3

average program runtimes per grid element an

be redued by 56% from 162nse to 70nse

and by 68% from 254nse to 81nse, respe-

tively. Furthermore, the variane in runtimes

is dereased to a fator of 1.8 between the best

and the worst performing problem size. When

ompared to the original fator of 5.6 without

padding enabled, program runtimes are muh

more preditable.

4 Related Work

In high-level funtional programming lan-

guages, lists rather than arrays form the pre-

dominant data struture. The most prominent

exeption is the language Sisal [10℄. However,

Sisal represents arrays as vetors of vetors

rather than as ontiguous data whih renders

array padding useless. So, we are not aware of

any similar optimization tehnique in this area.

However, in high-performane omputing,

mostly based on Fortran, data loality has

long been identi�ed as an important issue [21℄.

Muh researh has been foussed on program

transformations that reorder the sequene of

omputations in loop nestings [4, 17, 11℄. Loop

transformations suh as permutation, reversal,

or interhange, are used to adjust the itera-

tion order to a given array data layout in or-

der to ahieve unit stride memory aesses in

inner loops and, hene, to exploit spatial loal-

ity. Loop tiling, also alled loop bloking, is a

ombination of skewing and subsequent permu-

tation. It seeks to improve temporal loality in

loop nestings by reduing the iteration distane

between subsequent aesses to the same array

element [8, 3℄. Moreover, loop fusion allows to

exploit loality of referene aross single loop

nestings [9℄.

Often, superior ahe performane an be

ahieved if both the iteration order as well

as the memory layout are subjet to ompiler

transformations. Examples are the ombina-

tion of array transposition with loop permuta-

tion [2℄ or that of array padding with tiling in

order to inrease tile sizes and thus redue the



additional overhead inited by tiled ode [14℄.

While these approahes mostly fous on apa-

ity misses, onit misses due to limited set

assoiativity have been identi�ed as another

important soure of performane degradation

[20℄. Their quanti�ation has been ahieved

by ounting the number of integer solutions to

so-alled ahe miss equations, i.e. linear Dio-

phantine equations that speify the ahe line

to whih an array referene in a loop will be

mapped [5℄. Due to the omplexity and ex-

pense of suh aurate investigations, simpler

heuristis have been proposed [15, 16℄. The

padding inferene algorithm presented in Se-

tion 2 extends this work with respet to self-

interferene in several aspets. It does not

assume a diret-mapped ahe but expliitly

supports set-assoiative ahes. In addition

to spatial reuse onits, temporal reuse on-

its are also taken into aount. Furthermore,

padding an be performed in any dimension

and even in multiple dimensions; an additional

algorithm selets the most appropriate padding

dimension for eah onit to be solved.

5 Conlusion

This paper presents an algorithm that suess-

fully eliminates spatial and temporal reuse on-

its in Sa programs by impliitly applying

array padding where neessary. Runtime per-

formane investigations on the PDE1 benh-

mark show that this optimization tehnique

allows to substantially redue program run-

times for various problem sizes and, moreover,

ahieves muh more onsistent runtime perfor-

mane over a large range of problem sizes.
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