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ABSTRACT
Whenever large homogeneous data structures need to be
processed in a non-trivial way, e.g. in computational sci-
ences, image processing, or system simulation, high-level
array programming in the style of APL offers a far more
concise and abstract approach than traditional scalar lan-
guages such as C/C++ or FORTRAN-77. The same sort of
applications often can also be characterized as performance
critical and today represents the major domain for parallel
processing.

This paper reports on the development of a compiler
backend which allows to implicitly generate multithreaded
code from high-level array program specifications. On
shared memory multiprocessor systems, this code can be
executed in parallel without any additional programming
effort. After sketching out basic compilation schemes, opti-
mizations on the runtime system are addressed and, finally,
experimental runtime figures are presented.
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1 Introduction

Processing of large homogeneous data structures in areas
such as computational sciences, image processing, or sys-
tem simulation constitutes the most prominent application
domain for parallel processing. Despite the ubiquity of
arrays in parallel programs, the prevailing programming
languages used, i.e. C and FORTRAN-77, are inherently
scalar and offer only minimal support for processing multi-
dimensional arrays. They allow experienced programmers
to achieve utmost runtime performance, but at the same
time they enforce a very low-level programming style. As
a consequence, programs are typically difficult to read and
to understand. Explicit parallelization using common mes-
sage passing libraries, e.g. MPI [9], PVM [8], or BSP [22],
adds yet another dimension of complexity, which renders
program development, debugging, and maintenance even
more time-consuming and error-prone.

In contrast, high-level array languages like APL [15]

or J [4, 16] make array processing almost as simple as
dealing with scalars in traditional languages. Arrays are
regarded as abstract data objects with a certain structure
rather than as loose collections of individual data items or
even direct mappings into main memory. Programming
merely means the composition of basic homogeneous ar-
ray operations, which are applicable to arrays of any shape
including any number of dimensions, to form more com-
plex, more application-specific ones. With memory man-
agement also being implicit, programs mostly abstract from
concrete computing machinery. This abstract view together
with the inherent concurrency of high-level array opera-
tions also make them attractive for implicit or automatic
parallelization [1].

This paper reports on the development of compiler
support for the implicit parallelization of array language
programs for shared memory multiprocessors based on the
multithreading standard PTHREADS [5]. The choice of this
combination is motivated by several factors.

� Small to medium-sized shared memory multiproces-
sors represent an increasingly popular architecture,
which is more wide-spread than traditional large-scale
supercomputers.

� Despite the advent of OPENMP [6] parallel program-
ming is dominated by the concept of message passing
both as programming environment and as compilation
target. However, message passing covers shared mem-
ory architectures only indirectly by specific versions
of library implementations.

� A shared memory view on the level of the compilation
target renders an explicit data decomposition obsolete.
This does not only simplify the compilation process,
but — even more important — it reduces communica-
tion requirements. With clever low-level implemen-
tations communication and synchronization overhead
can be reduced with the consequence that even smaller
computational tasks benefit from parallel execution.

Putting it all together, the approach described here ad-
dresses non-experts in parallel programming who want to
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�

Return tmp;
�

WaitThreads( T�� � � � �T�);
�
�

�
�Terminate Thread T��

�

ForAll ��� � IdxSet� :
tmp[���] = �����(��	�� � � � � ��	�);

�

IdxSet� = UnqSubset( �� 
��);
�

Receive( tmp, 
��);
Receive( ��	�� � � � � ��	�);

�

�
�

�
�Start Thread T��

�

CreateThreads( T�� � � � �T�);
�

Broadcast( tmp, 
��);
Broadcast( ��	�� � � � � ��	�);

�

tmp = AllocateMemory( 
��)
�

��� GenArray( ���� ����������� � � � � ����� ) ��

�(master code) � (worker code)

Figure 1. Compilation scheme forGenArray operations.

boost the performance of their programs with a multipro-
cessor machine next door rather than the whizz in a su-
percomputer lab with long experience and unlimited re-
sources.

Although it is unlikely for a compiler-directed ap-
proach to achieve the same performance as a low-level
program hand-coded by some expert, the latter should at
least be approached. Hence, it is mandatory to start out
from a sequential runtime performance that is not orders
of magnitude away from traditional imperative program-
ming environments. In this regard, array languages, as the
ones mentioned before, must be considered inappropriate.
They are implemented by interpreters which restricts static
analysis and optimization; their flexibility renders compi-
lation very difficult [7, 3, 2]. Therefore, the techniques de-
scribed in this paper are not developed and implemented
in the context of APL or J, but in the context of SAC
(Single Assignment C). SAC [19, 21] is a functional ar-
ray language, which offers almost the level of abstraction
as APL [12]. However, some restrictions in conjunction
with thorough optimizations allow to achieve runtime per-
formance characteristics which are in a similar range as C
or FORTRAN-77 [18, 20, 13].

The rest of this paper is organized as follows. Section
2 sketches out the basic compilation schemes; Section 3
introduces an enhanced runtime system. Scheduling work
onto threads is addressed in Section 4. Section 5 inves-
tigates the runtime performance achieved, and Section 6
concludes.

2 Compiling Array Operations to Multi-
threaded Code

Array languages provide a large set of array operations, ei-
ther built-in or via libraries. However, almost all of them
fall into one of two basic categories: they either create a
new array whose elements are individually computed from
some arguments based on their index positions or they per-
form a reduction operation. To abstract from individual
properties of concrete operations we introduce two gener-
alized operations representing these categories:

GenArray( ���� ������ ����� � � � � ����� ) ,
FoldArray( ���� ������ ����� � � � � ������

fold op� neutral ) .

GenArray creates a new array of shape���, where���
denotes an integer vector defining both the number of di-
mensions as well as its extent in each dimension. Its el-
ements are separately computed by some operation�� ���.
Being parameterized over individual index positions, dif-
ferent operations may actually be realized by�� ��� on dis-
joint areas of the result array. With its arity left unspecified
any number of scalar and array arguments may occur. So,
GenArray andFoldArray may be considered opera-
tional templates rather than higher-order functions.

Similar to GenArray, FoldArray evaluates the
given functionop��� for each index position associated
with the shapeshp. Instead of using the results for ini-
tializing a new array, they are pairwise folded using the
binary fold operationfold opwith neutral elementneutral.
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�

Return tmp;
�

tmp = tmp�;
ForAll � � ��� � � � � �� :
tmp = fold op( tmp, tmp�);

�

Receive( tmp�� � � � �tmp�);
�

WaitThreads( T�� � � � �T�);
�
�

�
�Terminate Thread T��

�

Send( tmp�);
�

tmp� = 
������;
ForAll ��� � IdxSet� :
tmp� = fold op( tmp��

�����(��	�� � � � � ��	�));

�

IdxSet� = UnqSubset( �� 
��);
�

Receive(shp,foldop,neutral);
Receive(��	�� � � � � ��	�);

�

�
�

�
�Start Thread T��

�

CreateThreads( T�� � � � �T�);
�

Broadcast(shp,foldop,neutral);
Broadcast(��	�� � � � � ��	�);

�

��� FoldArray( ���� ����������� � � � � ������ fold op� 	
����
 ) ��

�(master code) � (worker code)

Figure 2. Compilation scheme forFoldArray operations.

Since the concrete sequence of folding operations is left
unspecified, legal fold operations must be associative and
commutative to ensure deterministic results.

Fig. 1 shows the compilation scheme forGenArray
operations into imperative pseudo code. Whenever the ini-
tial or master thread evaluates aGenArray operation, it
first allocates memory for storing the result array, which is
referred to by some previously unused variabletmp. Due
to the commitment to shared memory architectures, no ex-
plicit data decomposition is required, and implicit dynamic
memory management for arrays can be adopted from se-
quential implementations with little or no alteration. After-
wards, the base address and the shape of the result array as
well as the numerical arguments of the operation are broad-
cast, and, last but not least, the desired number of worker
threads is created.

At first, it seems inconsistent to send data to worker
threads prior to their creation. However, in a shared mem-
ory environmentsend andreceive are nothing but copy
operations to and from some specific memory buffer, which
may exist independently of the threads themselves. Broad-
casting data prior to thread creation allows for a non-
blocking implementation of the correspondingreceive

operation, and, thus, reduces synchronization requirements
among threads to their creation. It is also notable that
communication of compound data structures such as arrays
merely means sending references between threads, not the
data itself.

All worker threads uniformly execute the code shown
on the right hand side of Fig. 1, but each thread may iden-
tify itself by means of a unique ID. As a first step, a worker
thread receives the necessary arguments to set up an appro-
priate execution environment. Then, based on its unique
ID, each worker thread identifies a subspace of the total in-
dex space. Proper implementations ofUnqSubset guar-
antee that each legal index position belongs to exactly one
such index subspace. For each element of its individual in-
dex subspace a worker thread computes the corresponding
numerical operation and initializes the result array accord-
ingly. After having completed their individual computa-
tions, the worker threads terminate.

While worker threads cooperatively compute an array
operation, the master thread just awaits their termination.
As soon as the last worker thread has completed its share of
work, the master thread returns the result to the surrounding
context and continues with sequential program execution.
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Figure 3. Illustration of execution models.

Code generation forFoldArray, as shown in Fig. 2,
is quite similar. However, instead of computing elements of
a target array, worker threads initialize a local accumula-
tion variabletmp� by the neutral element of the fold opera-
tion and then perform the specified computations restricted
to the individual index subspace identified before. Hence,
each worker thread computes a partial fold result, which it
sends back to the master thread prior to its termination.

The master thread awaits the termination of all
worker threads before it receives their partial fold re-
sults. Once again, necessary thread management op-
erations are exploited to ensure proper synchronization
uponsend/receive communication. Finally, the mas-
ter thread itself combines the various partial fold results to
generate the overall result.

3 Enhancing the Execution Model

Code derived by the compilation schemes introduced in
the previous section executes as a sequence of steps alter-
natingly performed in single-threaded and in multithreaded
mode. Following the multithreaded execution of one array
operation, all worker threads are terminated during syn-
chronization, and the same number of threads is created
again for the multithreaded execution of the next array op-
eration, as illustrated in Fig. 3.

This fork/join model is conceptually simple. Syn-
chronization and communication are limited to thread cre-
ation and thread termination. Worker threads do not inter-

act with each other at all. Unfortunately, frequent creation
and termination of threads is a considerable source of over-
head.

A solution which combines the conceptual simplic-
ity of the fork/join approach with an efficient execution
scheme is shown on the right hand side of Fig. 3. In the
enhanced fork/join model, the desired number of worker
threads is created once at program startup, and they remain
active until the whole program terminates. All necessary
synchronization among threads is realized by means of two
tailor-made barriers: thestart barrier and thestop barrier.

After creation, worker threads immediately hit a start
barrier, which is lifted as soon as the master thread en-
counters the first array operation. The master thread and
all worker threads thereupon activated share the computa-
tion of the array operation exactly as in the pure fork/join
model. Worker threads that have completed their individ-
ual computations pass the following stop barrier and, with
nothing else to do, immediately move on to the next start
barrier. However, the master thread waits at the stop barrier
for the last worker thread to arrive before it proceeds with
subsequent (sequential) computations.

The combination of a stop barrier and a subsequent
start barrier represents a full barrier synchronization, which
is known to cause considerable runtime overhead and to
scale poorly with the number of threads [14]. There-
fore, the efficient implementation of start and stop bar-
riers is crucial for runtime performance. Fig. 4 shows
one such implementation. It is based on a global flag,
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which is shared by all threads, and on one local flag within
the scope of each worker thread. Assuming all flags are
statically initialized, say to 1, worker threads executing
START BARRIER WAIT block on the condition of the
emptyWHILE-loop. By inverting the global flag during ex-
ecution ofSTART BARRIER LIFT, the master thread lifts
the barrier and, thus, activates the worker threads.

START_BARRIER_WAIT( )
{

while (local_flag == MT_global_flag);
local_flag = MT_global_flag;

}

START_BARRIER_LIFT( )
{

MT_global_flag = 1 - MT_global_flag;
}

Figure 4. Implementation of start barriers.

This start barrier implementation completely avoids
expensive thread synchronization mechanisms such as mu-
tex locks. Although inverting the global flag while worker
threads continuously check its value, constitutes a race con-
dition, this is without problems. On the one hand, only the
master thread has write access to the global flag. On the
other hand, for worker threads solely the fact that the flag
has changed its value is important and not the specific state
of the memory location.

One may argue that iteratively reading the global
flag in very short intervals of time generates heavy con-
tention on memory. In fact, the opposite is true for mod-
ern shared memory multiprocessors with processor-specific
cache memories and hardware cache coherence. As soon
as an individual worker thread arrives at the start barrier, it
loads the global flag into the local cache of the processor it
currently is running on. From that point on, it only accesses
the local cache when blocking on the global flag. However,
when the master thread inverts the global flag and writes
its new value back to memory, the cache coherence mecha-
nism invalidates the local copies in all other caches. Worker
threads only then reload the global flag from memory and,
thereupon, proceed beyond the start barrier. In total, each
thread performs at most two main memory accesses during
execution of the start barrier. The sole assumption made
on the memory consistency model is that write operations
issued by one processor are noticed by others.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 5. Organization of tree-structured stop barriers.

The stop barrier employs the same synchronization
technique as the start barrier. However, its scalability is im-
proved by a tree-like organization, as illustrated in Fig.5.
Threads with an odd ID simply pass the stop barrier, im-
mediately running into the subsequent start barrier. Each
thread with an even ID	 waits for thread	 � � to com-
plete. Then, it either passes the stop barrier itself if its ID is
not a multiple of 4, or it continues to wait for thread	 � �
otherwise, and so on.

In the enhanced fork/join execution model the impact
of thread creation and of thread termination on runtime
performance decreases with growing overall program ex-
ecution time. Nevertheless, it makes sense in principle to
pay attention to the efficiency of their implementations. In
a straightforward approach, the master thread creates all
worker threads one after the other by means of aFOR-loop.
Execution of productive code is delayed by a time which
grows linearly with the number of threads.

1 2 3 4 5 6 7

1 2 3 4 5 6 7
0 0

Figure 6. Organization of thread creation phase.

This initial delay can be easily reduced by having the
worker threads participate in thread creation. This leads
to a binary tree thread creation scheme similar to the stop
barrier implementation. With this solution, the initial de-
lay can be reduced to� ��
��� ��� ������	��. However,
it may be further reduced to only���� by excluding the
master thread from thread creation. As outlined in Fig. 6,
the master thread creates exactly one worker thread and
then immediately starts with the execution of productive
code. Instead of the master thread, the first worker thread
subsequently initiates a regular binary tree thread creation
scheme. With this solution, thread creation almost com-
pletely overlaps with a program’s sequential startup phase,
e.g. reading input data from files.

4 A Note on Scheduling

Regardless of the execution model, the even distribution of
workload among worker threads is a key issue for achiev-
ing good performance. The clear separation of scheduling
code (UnqSubset) from computational code, as shown in
Figs. 1 and 2, allows to plug-in various different scheduler
implementations. The usual static workload distribution
schemes are supported without interfering with actual code
generation for the computational part of the code. This fea-
ture is particularly essential as code generation for array
operations as general as the ones covered here can be quite
challenging [11].

Unfortunately, the compilation schemes presented in
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�

Cont ?
�

ForAll ��� � IdxSet� : ... ;
�

Cont, IdxSet� = UnqSubset( �� 
��);
�

�

Figure 7. Enabling workload balancing.

Section 2 exclude any form of dynamic load balancing be-
cause each thread selects exactly one iteration subspace.
However, dynamic workload adjustment relies on repeat-
edly assigning smaller portions of work. To overcome
this limitation, the compilation schemes are extended as
shown in Fig. 7. In addition to determining some iteration
subspace, a scheduler implementation also provides a flag
cont which decides whether or not the scheduler wishes
to re-assign more work to the thread at a later stage of
the computation. This solution extends the simple plug-in
technique to a wide range of dynamic scheduling schemes
without substantially changing the compilation process.
However, certain scheduler implementations may require
synchronization among threads on a lower level of abstrac-
tion and, hence, must be designed and selected carefully.

5 Runtime Performance

Experimental investigations of the runtime performance
achieved by the methods described in the previous chap-
ters have been made on 3 different machine architectures:
a 4-processor SUN E650, a 12-processor SUN E4000, and
a 72-processor SUN 15k. 2-dimensional Jacobi relaxation
with a 4-point stencil served as a benchmark kernel. Al-
though being quite simple, it is still not a trivial benchmark
as it does require data exchange between processors after
each iteration.

Fig. 8 shows speedups achieved by multithreaded pro-
gram execution relative to sequential execution. Access to
the two larger machines has been non-exclusive. Hence,
not all processors could actually be used. Various grid sizes
have been investigated, as shown for each machine indi-
vidually. Since there is always a full synchronization after
re-computation of the grid, its size determines the ratio be-
tween productive computation and administrative overhead
inflicted by parallel execution.

Experiments which also cover extremely small grid
sizes demonstrate the efficiency of the proposed solution.
Superlinear speedups observed for some problem sizes on
the SUN E15k are due to cache effects. For certain com-
binations of problem size and cache configuration taking
one additional processor may result in a situation where
all memory processed by each individual processor com-
pletely fits into its local caches.
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Figure 8. Speedups observed on different machines.

6 Conclusion and future work

High-level array programming offers the opportunity to
write concise and elegant code in various application do-
mains. Such programs also tend to exhibit large degrees of
concurrency, which can be exploited for substantially re-
ducing program runtimes by parallel execution. This paper
describes compiler and runtime system support that allows
exploitation of program-inherent concurrency without any
additional programming effort. Experiments on three dif-
ferent SMP architectures demonstrate the suitability of the
approach in principle. Additional information on technical
realizations can be found in [10].

Opportunities for future improvements are still man-
ifold. As SMP systems grow in size, it may often not be
feasible to efficiently use all available processors to cooper-
atively compute a single array operation. Hence, it may be
necessary to combine task and data parallel concepts simi-
lar to thegroup SPMD model[17]. In the context of SAC,
concurrency between array operations can be detected eas-
ily due to its purely functional semantics.
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