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Abstract. Performance of generic array programs crucially relies on
program specialisation wrt. shape information. Traditionally, this is done
in a rather ad hoc fashion by propagating all shape information that is
available. When striving for a compositional programming style that ad-
heres to good software engineering principles this approach turns out to
be insufficient. Instead, static value information needs to be propagated
as well which introduces all the well known problems of partial evaluation
in general.

In this paper, we propose a static analysis that identifies to what ex-
tent specialisation needs to be employed in order to achieve a certain
level of shape information. This narrows the scope of specialisation far
enough to make specialisation for shape information feasible despite a
compositional programming style. Some examples to this effect are pre-
sented.

1 Introduction

Compiling abstract high-level specifications into efficiently executable code is
well-known to be a challenging task. Usually, a whole set of complementing
optimisations need to be orchestrated properly in order to achieve excellent run-
time performance. In the area of array programming, the effectiveness of many
optimisations relies on static knowledge of array rank (dimension) and array
shape (extent wrt. individual axes). Not only does static knowledge of shapes
facilitate many loop related optimisations, it is also essential for eliminating in-
termediate arrays[LLS98, Sch03] as well as compiler-introduced memory reuse
[Can89, GT04].

For most applications in array programming, the majority of array operations
are such that the shape of the result can be computed from the shapes, rather
than full values, of the arguments. Such operations often are referred to as uni-
form operations [Hui95]. Uniformity enables a straight-forward approach to an
effective utilisation of static shape information: Whenever a shape information is
statically available it is propagated into all existing function calls by specialising
these according to the given shapes. Since most array programs operate on a
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small set of different shapes only, non-termination of specialisation in practice
is rarely hit or otherwise can be detected by a compiler fairly easily [Kre03].
For these reasons, array languages such as Fish [JMB98, JS98] or SaC [Sch03]
follow that approach.

Unfortunately, uniformity is at odds with a compositional programming style.
In contrast to Fish, SaC allows the programmer to successively break down com-
plex (and usually uniform) array operations into compositions of small, rather
generic operations similar to those available in Apl. These small array opera-
tors typically separate concerns such as inspecting structural properties, selecting
parts of an array, or combining arrays into new ones. Unfortunately, the separa-
tion of concerns in most cases makes these small operators non-uniform, i.e., the
shapes of their results depend on argument values rather than argument shapes
only. Typical examples are operations such as take or drop. These operations
select parts of an array by taking or dropping a certain amount of elements,
respectively. The number of elements to be dropped or taken is specified as
an explicit parameter of these operations which renders the shape of the result
dependent on that parameter’s value.

Although such a programming style is desirable from a software engineering
perspective, it has a strong impact on the performance of such specifications.
A specialisation strategy as described above, i.e., based on specialisations to
shapes only, leads to a loss of shape information whenever non-uniform opera-
tions such as take or drop are used. As shown in [Kre03], the loss of static shape
information can have a significant effect on the overall performance.

One alternative to avoid this potential source of performance degradation
would be to specialise functions to argument values whenever these are statically
available. However, this would in fact fully embrace the online approach to partial
evaluation and, with it, its well-known difficulties: recursive functions introduce
undecidability, and the resulting code expansion may outweigh the potential gain
in performance (for surveys see [JGS93, Jon96]).

In order to avoid these difficulties, we propose a static program analysis that
for each function of a given program infers what level of argument specialisation
is required in order to compute the shape of the result. With this information,
we can restrict specialisation to argument values to those situations, where this
information is crucial for shape inference. In all other situations, a less aggressive
specialisation scheme, e.g. specialisation to argument shapes, can be applied.
Since Apl-style program compositions usually contain only a small percentage of
non-uniform operations it turns out that, by and large, only a few specialisations
to argument values are required in order to statically infer all shapes within a
large application program.

More generally, the proposed analysis can serve as a “specialisation oracle”
that guides the entire specialisation process as the inference algorithm does not
only compute the requirements for static shape knowledge, but it also determines
the requirements for other levels of static shape information such as static rank
knowledge. This additional information can be used for adjusting the speciali-
sation oracle so that it can predict the minimum level of specialisation that is
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required for a predefined level of overall shape information. Once the scope of
the specialisation has been determined, an online approach towards specialisa-
tion suffices for specialising most programs to the predefined level irrespective
of whether they have been written in a compositional style or not.

The inference algorithm is described in terms of a subset of SaC [Sch03], which
has been adjusted to a fairly generic λ-calculus syntax. This measure allows us
to concentrate on the language essentials and it may facilitate transferability
of results to other languages. Besides a formal description of the inference, its
effectiveness is demonstrated by means of several examples.

The paper is organised as follows: the next section introduces a stripped-down
version of SaC, called SaCλ. Section 3 discusses the issues of compositional
programming and function specialisation by means of a few examples. The main
idea of the analysis is presented in Section 4, before Section 5 and Section 6
provide the formal details of it. In Section 7 the formalism is applied to the
examples of Section 3. Section 8 relates the work to other approaches towards
the specialisation og generic program specifications before some conclusions are
drawn in Section 9.

2 SaCλ

This paper is based on a stripped-down version of SaC. It contains only the bare
essentials of the language and its syntax has been adjusted to a λ-calculus style
in order to facilitate transferability of results.

Fig. 1 shows the syntax of SaCλ. A program consists of a set of mutually
recursive function definitions and a designated main expression. Essentially, ex-

Program ⇒ [ FunId = λ Id[ , Id ]* .Expr ; ]*
main = Expr ;

Expr ⇒ Const

| Id

| FunId ( [ Expr [ , Expr ]* ] )
| Prf ( [ Expr [ , Expr ]* ] )
| if Expr then Expr else Expr

| let Id = Expr in Expr

| with( Expr <= Id < Expr ) : Expr
genarray( Expr , Expr )

Prf ⇒ shape
| dim
| sel
| ∗
| ...

Fig. 1. The syntax of SaCλ
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pressions are either constants, variables or function applications. As SaC does
neither support higher-order functions nor name-less functions, abstractions oc-
cur at top-level only. Function applications are written in C-style, i.e., with
parenthesis around arguments rather than entire applications. It should be noted
here that all constants are in fact arrays. Therefore, we use (nestings of) vectors
in square-brackets alongside with scalars as notation for constants. SaCλ pro-
vides a few built-in array operators, referred to as primitive functions. Among
these are shape and dim for computing an array’s shape and dimensionality
(rank), respectively. Furthermore, a selection operation sel is provided which
takes two arguments: an index vector that indicates the element to be selected
and an array to select from. These very basic array operations are complemented
by element-wise extensions of arithmetic and relational operations such as *
and >=, respectively. For improved readability, we use the latter in infix nota-
tion throughout our examples.

On top of this language kernel, SaC provides a special language construct for
defining array operations in a generic way which is called with-loop. For the
purpose of this paper, it suffices to consider a restricted form of with-loop only.
Fully-fledged with-loops are described elsewhere, e.g. in [Sch03]. They provide
several extensions which primarily relate to programming convenience. Since
these extensions do not affect the analysis in principle but would substantially
blow up the formal apparatus, we refrain from the fully-fledged version.

As can be seen from Fig. 1, with-loops in SaCλ take the general form

with ( lower <= idx vec < upper) :expr
genarray( shape, default)

where idx vec is an identifier, lower, upper, and shape denote expressions that
should evaluate to vectors of identical length and expr and default denote ar-
bitrary expressions that need to evaluate to arrays of identical shape. Such a
with-loop defines an array of shape shape, whose elements are either computed
from the expression expr or from the default expression default. Which of these
two values is chosen for an individual element depends on the element’s location,
i.e., it depends on its index position. If the index is within the range specified
by the lower bound lower and the upper bound upper, expr is chosen, otherwise
default is taken. As a simple example, consider the with-loop

with ([1] <= iv < [4]) : 2
genarray ( [5], 0)

It computes the vector [0, 2, 2, 2, 0]. Note here, that the use of vectors
for the shape of the result and the bounds of the index space (also referred
to as the ”generator”‘) allows with-loops to denote arrays of arbitrary rank.
Furthermore, the “generator expression” expr may refer to the index position
through the “generator variable” idx vec1. For example, the with-loop

1 Most of our examples use iv as variable name for the generator variable.
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with ([1,1] <= iv < [3,4]) : sel([0], iv) + sel([1], iv)
genarray ( [3,5], 0)

yields the matrix

�
� 0 0 0 0 0

0 2 3 4 0
0 3 4 5 0

�
� .

We can formalise the semantics of SaCλ by a standard big-step operational
semantics for λ-calculus-based applicative languages as defined in several text-
books, e.g., [Pie02]. The core relations, i.e., those for conditionals, abstractions,
and function applications can be used in their standard form. Hence, only those
relations pertaining to the array specific features of SaCλ are shown in Fig. 2.

const :
n ⇓ < [], [n] >

vect :
∀i ∈ {1, . . . , n} : ei ⇓ < [ s1, . . . , sm], [ di

1, . . . , di
p] >

[ e1, . . . , en] ⇓ < [ n, s1, . . . , sm], [ d1
1, . . . , d1

p, . . . , dn
1 , . . . , dn

p ] >

dim :
e ⇓ < [ s1, . . . , sn], [ d1, . . . , dm] >

dim( e) ⇓ < [], [n] >

shape :
e ⇓ < [ s1, . . . , sn], [ d1, . . . , dm] >

shape( e) ⇓ < [ n], [ s1, . . . , sn] >

sel :

iv ⇓ < [ n], [ i1, . . . , in] >
e ⇓ < [ s1, . . . , sn], [ d1, . . . , dm] >

sel( iv, e) ⇓ < [], [ dl] >

where l =
n∑

j=1
(ij ∗

n∏
k=j+1

sk)

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

* :

e1 ⇓ < [ s1, . . . , sn], [ d1
1, . . . , d1

m] >
e2 ⇓ < [ s1, . . . , sn], [ d2

1, . . . , d2
m] >

*( e1, e2) ⇓ < [ s1, . . . , sn], [ d1
1 ∗ d2

1, . . . , d1
m ∗ d2

m] >

with :

el ⇓ < [ n], [ l1, . . . , ln] >
eu ⇓ < [ n], [ u1, . . . , un] >

eshp ⇓ < [ n], [ shp1, . . . , shpn] >
edef ⇓ < [ s1, . . . , sm], [ d1, . . . , dp] >

∀i1 ∈ {l1, ..., u1 − 1} ... ∀in ∈ {ln, ..., un − 1} : (λ Id . eb [ i1, ..., in])

⇓ < [ s1, . . . , sm], [ d
[i1,...,in]
1 , . . . , d

[i1,...,in]
p ] >

with( el <= Id < eu) : eb genarray( eshp, edef)
⇓ < [ shp1, . . . , shpn, s1, . . . , sm],

[ d
[0,...,0]
1 , . . . , d

[0,...,0]
p , . . . , d

[shp1−1,...,shpn−1]
1 , . . . , d

[shp1−1,...,shpn−1]
p ] >

where d
[x1,...,xn]
i = di iff ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj , ..., shpj − 1}

Fig. 2. An operational semantics for SaCλ
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As a unified representation for n-dimensional arrays we use pairs of vectors
< [ shp1, . . . , shpn], [ data1, . . . , datam] > where the vector [ shp1, . . . , shpn]
denotes the shape of the array, i.e., its extent with respect to the n individual
axes, and the vector [ data1, . . . , datam] contains all elements of the array in a
linearised form. Since the number of elements within an array equals the product

of the number of elements per individual axes, we have m =
n∏

i=1
shpi.

The first two evaluation rules of Fig. 2 show how scalars as well as vectors are
transformed into the internal representation. Note with the rule vect, that all
elements need to be of the same shape which ensures shape consistency in the
overall result.

The next three rules formalise the semantics of the main primitive operations
on arrays: dim, shape, and sel. Element-wise extensions of standard operations
such as the arithmetic and relational operations are demonstrated by the exam-
ple of the rule for multiplication (*).

The last rule gives the formal semantics of the with-loop in SaCλ. The
first three conditions require the lower bound, the upper bound and the shape
expression to evaluate to vectors of identical length. The next two conditions
relate to the default expression edef and the generator expression eb, respectively.
They ensure, that the default expression evaluates to an array of the same shape
as the generator expression does. Since the generator expression may refer to the
index variable, this is formalised by transforming the generator expression into
an anonymous function and by evaluating a pseudo-application of this function
to all indices specified in the generator. The lower part of the with-loop-rule
shows how the values from the individual generator expression evaluations and
the value of the default expression are combined into the overall result. The shape
of the result stems from concatenating the shape expression with the shape of the
default element. Its data vector consists of a concatenation of the data vectors
from the individual generator expression evaluations. Since the generator does
not necessarily cover the entire index space, the default expression values need to
be inserted whenever at least one element of the index vector [i1, . . . , in] is outside
the generator range, i.e., ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj, ..., shpj − 1}.
Formally this is achieved by the “where clause” of the rule with.

3 A Motivating Example

The core language introduced in the previous section suffices to define generic
array operations similar to those available in array languages such as Apl, Nial,
or J. As an example, consider the operations take and create as defined in
Fig. 3. The function take expects two arguments v and a. It returns an array
of shape v whose elements are copied from those in the corresponding posi-
tions of the argument array a. Note here, that the specification of 0*v as lower
bound yields a vector of zeros of the same length as the vector v and, thus,
ensures shape-invariance, i.e., it makes take applicable to arrays of arbitrary
dimensionality.
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take = λ v,a . with ( 0*v <= iv < v): sel( iv, a)
genarray( v, 0)

create = λ s,x . with ( 0*s <= iv < s): x
genarray( s, x)

Fig. 3. A definition of take and create in SaCλ

The function create takes two arguments as well: a shape vector s and a
value x. From these it computes an array of shape s with all elements identical
to x. Again, shape-invariance is achieved by computing the bounds from the
vector s that determines the shape of the result.

Both these functions are non-uniform, i.e., result shapes cannot be computed
from the argument shapes only. Instead, argument values are required to deter-
mine the result shapes. Several application studies show that functions of this
sort usually prove very useful when adopting a compositional programming style
[Sch03, GS99]. A typical application of these operations is shown in Fig. 4. The

matmul = λ dl,dm,v . let
maind = dm * v

in let
lowerd = dl * take( shape( dl), v)

in let
zeros = create( shape( dm) - shape( dl), 0)

in maind + concat( zeros, lowerd)

Fig. 4. A definition of a sparse matrix vector multiply in SaCλ

function matmul implements a special case for a matrix vector product where
the matrix contains non-zero values on two diagonals only: the main diagonal
(argument dm) and another diagonal dl located below the main one. A third ar-
gument v represents the vector the matrix is to be multiplied with and, thus, is
expected to have as many elements as the main diagonal dm does. The difference
in length between the two diagonals determines the exact location of the lower
diagonal. Essentially, the matrix vector product consists of the sum of products
dm * v and dl * v. However, the vector v needs to be shortened prior to the
multiplication with dl to match its size, and the resulting vector (lowerd in
Fig. 4) needs to be prepended by sufficient zeros in order to match the length of
the main diagonal dm. The latter is achieved by concatenating a vector of zeros
(zeros in Fig. 4) of appropriate length.

The most remarkable aspect of this function is that although it makes use of
the two non-uniform operations take and create, matmul itself is uniform. This
stems from the fact that the shape determining arguments of take and create
are computed from the shape of the arguments dm and dl, a programming pattern
that can be observed rather frequently.
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A brute force approach to static inference based on specialisation to argu-
ment shapes only would only yield the dimensionalities for the results of the
applications of take and create, not their shapes. This, in turn, would lead to
the loss of static result shape knowledge for matmul itself. That knowledge can
only be gained, if take and create both are specialised wrt. values in their first
argument position, and if the subtraction in the first argument position of create
is computed statically.

The overall goal of the analysis presented in this paper is to statically infer
to what extent functions need to be specialised in order to achieve a certain
level of information for their results. In the given example, the analysis should
yield that take and create need to be specialised to values if the result shape
is required, and that for matmul it suffices to specialise wrt. argument shapes.
However, the analysis should also yield to which extent all subexpressions need
to be calculated statically in order to achieve that goal.

4 Basic Approach

Traditionally, binding time analysis is based on a two element domain: all ex-
pressions are either attributed as static or as dynamic. In our approach, we
distinguish four different levels of static array information2:

AUD (Array of Unknown Dimensionality):
no shape information is available at all;

AKD (Array of Known Dimensionality):
dimensionality is known but not the exact shape;

AKS (Array of Known Shape):
the exact shape is available at compile-time;

AKV (Array of Known Value):
not only the exact shape but also the value is statically known.

These four levels build the grounds for our analysis. We try to infer to which
extent static knowledge of the arguments of a function is needed in order to
achieve a certain level of static information about the result. Although we are
primarily interested in the level of information that is required for statically
computing the shape of the result only (AKS result), we need to infer the required
levels for all possible result levels. This extended effort is required as we may
find function applications in positions where other levels of shape information
than just AKS are required. Consider, for example, the expression shape( dm)
- shape( dl) of the matmul example. Here, it is essential for the inference to
find out which level of information is required for dm and dl in order to compute
the value of the expression statically.

As a consequence, we do not attribute each expression with one of these levels
only, but we need to infer mappings from the set of levels {AUD, AKD, AKS,
2 Readers familiar with SaC may notice that these levels directly correspond to the

hierarchy of array types in SaC which is essential when it comes to implementing
the specialisation phase.
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AKV} into itself. Once we have inferred such mappings for all arguments of a
function, we can use this information to find out which level of specialisation is
required in order to achieve a certain level of result information.

Let us consider the built-in operation shape as an example. For its relation
between result level and argument level, we find the following mapping in our
four-element-domain:

{ AUD→AUD,
AKD→AUD,
AKS →AKD,
AKV→AKS}

As the result of the primitive function shape always is a vector, no array infor-
mation at all is needed if we are interested in the dimensionality of the result.
The shape of the result requires the dimensionality of the argument only, and
the value of the result can be deduced from the shape of the argument.

In order to formalise this approach, we can identify the different levels of array
information as coarsening steps in the value domain of SaCλ. While AKV is
identical to our original domain of values of the form

< [ shp1, . . . , shpn], [ data1, . . . , datam] >,
AKS can be described by values of the form

< [ shp1, . . . , shpn], – >.
Taking the use of the ’–’ symbol for irrelevant values further, we can use

< [
n︷ ︸︸ ︷

–, . . . , –], – >
for AKD arrays and

< –, – >
for AUD arrays.

With these new domains, we can now deduce new semantic rules from those
of Fig. 2. We successively weaken the preconditions to less precise domains and
determine the effect of this information loss on the postconditions. Applying this
approach to the shape-rule, we obtain three new rules:

AKSshape :
e ⇓ < [ s1, . . . , sn], – >

shape( e) ⇓ < [ n], [ s1, . . . , sn] >

AKDshape :
e ⇓ < [

n︷ ︸︸ ︷
–, . . . , –], – >

shape( e) ⇓ < [ n], – >

AUDshape :
e ⇓ < –, – >

shape( e) ⇓ < [ –], – >

From these rules we observe that

– AKS arguments are mapped into AKV ones
– AKD arguments are mapped into AKS ones
– AUD arguments are mapped into AKD ones
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As we are interested in predicting the required argument shape-levels for a de-
sired return shape-level, we are actually looking for the inverse of the mapping
deduced from the semantic rules. The inverse is well-defined as all functions are
monotonic with respect to the array information hierarchy, i.e., providing more
shape information can never lead to fewer shape information of the result. Fur-
thermore, the finite domain/codomain guarantees an effective computability of
the inverse.

In case of the shape operation, we obtain exactly the same mapping as the
one we have derived earlier in an informal fashion.

Uniformity of a function can now easily be recognised from its associated
mapping: whenever AKS is mapped into a shape-level less or equal to AKS, we
know that the shape of the function’s result does at most require the shape of
the argument, not its value. The unpleasant non-uniform cases are those where
AKS is mapped into AKV .

5 Towards an Inference Algorithm

Rather than just giving the coarsened semantic rules, in the sequel, we develop
an algorithm for effectively inferring the shape-level mappings described in the
previous section for arbitrary SaCλ programs.

In order to achieve a more concise notation, we encode our four-element-
domain by the numbers 0,1,2 and 3. This allows us to represent the mappings
on that domain as four-element-vectors of these numbers. Applications of these
mappings then boil down to selections into the vector. Using 0 for AUD, 1
for AKD, 2 for AKS, and 3 for AKV, we can encode the mapping for shape
as [0, 0, 1, 2]. Similarly, we obtain the vector [0, 0, 0, 1] for the primitive oper-
ation dim. It shows that only if we are interested in the result value itself we
need to know something about the argument and all we need to know is its
dimensionality.

We refer to these vectors as propagation vectors as they, for a given func-
tion application, propagate a given return value demand into a demand for
the arguments. If we are, for example, interested in the value of an expression
shape( dm), i.e., we have a demand of 3 (AKV), this demand propagates into a
demand on dm by selecting the third element of the propagation vector of shape
yielding [0,0,1,2][3] = 2 (AKS) as demand for dm.

Functions with more than just one argument require as many propagation
vectors as we have arguments. For example, the built-in selection operation sel

has two propagation vectors:
[
[0, 2, 2, 3]
[0, 1, 2, 3]

]
. If we are interested in the dimension-

ality of the result, we need to consult the second element in each propagation
vector. It shows that the shape of the selection vector (first argument) is needed
as well as the dimensionality of the array to be selected from (second argument).

Computing propagation vectors of entire functions essentially boils down to
propagating all four possible demands through the body expression and col-
lecting the resulting demands for the individual arguments as vectors. As an
example, let us consider the expression λ a . sel([0], shape( shape( a))). It
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computes the shape of the shape of an array a and selects the only component
of the resulting vector which is identical to computing the array’s dimension-
ality. Hence, we expect a propagation vector identical to that of the primitive
operation dim to be computed for this function.

First, let us compute the demand for a assuming we need to statically com-
pute the value of the overall expression, i.e., we have an initial demand of 3
(AKV). That demand propagates into the second argument of the selection by
applying the second propagation vector of sel to it, i.e., we obtain [0,1,2,3][3] =
3 (AKV) as demand for the subexpression shape( shape( a)). Propagating
that demand through the outer application of shape yields [0,0,1,2][3] = 2 (AKS)
which subsequently is propagated through the inner application of shape result-
ing in [0,0,1,2][2] = 1 (AKD) as demand for a.

Similarly, the other three possible overall demands can be propagated through
the function body. All these result in a demand of 0 (AUD) for a. Combining
these results into a vector yields [0,0,0,1] as propagation vector for the given
function which corresponds to the propagation vector of the built-in operation
dim.

As all four demands can be computed independently, the propagation in fact
can be implemented as a data parallel operation that propagates entire demand
vectors through the function bodies, starting out from the canonical demand
vector [0,1,2,3].

6 Inferring Propagation Vectors

So far, all our example functions were combinators, i.e., they did not contain any
relatively free variables. Although that holds for all built-in operators and for all
user-defined functions in SaCλ, it does not hold for arbitrary expressions. These
can be nested let-expressions or with-loops both of which introduce locally
scoped variables. To address this situation, any inference scheme for propagation
vectors needs to deal with environments that hold demands for relatively free
variables.

We introduce a scheme SD(expr , dem, F) which computes an environment
that contains demand vectors for all relatively free variables of an expression
expr. It expects two additional parameters: an overall demand dem, and a func-
tion environment F that contains the propagation vectors of all functions. Fig. 5
shows a formal definition of that scheme. Constants meet any demand and do
not raise any new demands, hence, an empty set is returned for constants. If a
given demand dem is imposed on a variable Id then the singleton set is returned
containing the pair of the identifier and the given demand.

For function applications, the demand is translated into argument demands
by the appropriate propagation vectors first. These are either extracted from
the function environment F , or — in case of built-in operators — they are de-
termined by an auxiliary scheme PV . After the initial demand dem has been
translated into demands demi for the individual arguments, the scheme is re-
cursively applied to the argument expressions. The resulting sets of demands



A Binding Scope Analysis for Generic Programs on Arrays 223

SD(Const, dem, F) = {}

SD(Id, dem, F) = {Id : dem}

SD(FunId(e1, ..., en), dem, F) =
n�

i=1
SD(ei, demi, F)

where demi = (F(FunId)i)[dem]

SD(Prf(e1, ..., en), dem, F) =
n�

i=1
SD(ei, demi, F)

where demi = (PV(Prf)i)[dem]

SD(let Id = e1in e2, dem, F) =
�

( SD(e2, dem, F) \ {Id} )
⊕ SD(e1, dem′, F)

�

where dem′ = PV(λ Id . e2)[dem]

SD
�
with(elb<=Id<eub) : e
genarray(eshp, edef ) , dem, F

�
=

�
�����

SD(eshp, dems, F)
⊕ ( SD(e, dem, F) \ {Id} )
⊕ SD(edef , dem, F)
⊕ SD(elb, demId, F)
⊕ SD(eub, demId, F)

�
				�

where dems = [0,2,3,3][dem]
demId = PV(λ Id . e)[dem]

Fig. 5. Scheme for inferring specialisation demands

for relatively free variables are combined by an operation denoted as ⊕. It con-
stitutes a union of sets for those variables that occur in one set only and an
element-wise maximum on the demand vectors for all variables that occur in
both sets.

Let-expressions essentially are a combination of the demands in the body and
the demands in the defining expression. However, the external demand dem needs
to be translated into the demand for the defining expression dem′ by computing
the propagation vector for the underlying λ-abstraction. Furthermore, we need
to exclude the demand for the defined variable from the demands inferred from
the body of the let-expression as relatively free occurrences in the body relate
to this very definition.

The dominating rule for inferring specialisation demands of array operations
is the rule for with-loops as these are the predominant language constructs
for defining array operations in SaC. While the overall demand dem can be
propagated without modification into the generator expression e and the de-
fault expression edef , the most important effect is the increase in demand for
the shape expression eshp. Here, we have a propagation vector [0,2,3,3] which
indicates that we lose one level of shape information. As a consequence, we need
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to statically infer the exact value of this expression if we want to find out the
shape of the result. The overall demand of the with-loop, again, is the combina-
tion of the demands of the individual components using the translated demands
dems, deme, and demId for the shape expression, defining expressions, and the
boundary expressions, respectively.

All that remains to be defined is the auxiliary scheme for obtaining the prop-
agation vectors PV as shown in Fig. 6. It takes a function and returns a vector

PV(shape) = [[0, 0, 1, 2]]

PV(dim) = [[0, 0, 0, 1]]

PV(sel) =



[0, 2, 2, 3]
[0, 1, 2, 3]

�

PV(∗) =



[0, 1, 2, 3]
[0, 1, 2, 3]

�

PV(λ Id1, ..., Idn . e) =

�

�

SD(e, [0, 1, 2, 3], F)(Id1)
...

SD(e, [0, 1, 2, 3], F)(Idn)

�
��

Fig. 6. Computing propagation vectors

of propagation vectors. For built-in operations such as shape, dim, etc. these
are constants defined as explained earlier. For user defined functions or abstract
functions as introduced by the scheme SD, the scheme SD itself can be utilised.
It is applied to the body of the function, assuming demand for all four different
levels ([0,1,2,3]). As this yields the demands for all relatively free variables it
suffices to select those entries that relate to the binding λ. Variables that do
not occur in these sets are not used within the body and, thus, obtain the prop-
agation vector [0,0,0,0]. This is realised by the selection operation denoted as
SD(...)(Idi).

With these definitions, we can define the overall propagation vector environ-
ment for user-defined functions F . Assuming a program of the form

f1 = e1
...

fn = en

main = e
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we obtain:

F =
n⊕

i=1
{fi : PV(ei)} .

The interesting aspect of this definition, from an implementational point of
view, is its recursive nature which arises from the reference to F in the definition
of PV(ei). However, due to the monotonicity of the maximum of the ⊕ operation
and the finiteness of the domain, the computation of F can be implemented as
a fixed-point iteration starting with propagation vectors [0,0,0,0].

7 Applying the Inference Algorithm

This section illustrates the formalism of the previous section by providing a
formal derivation of the propagation for the functions take and matmul from
Section 2. For take, we obtain:

PV(λ v,a . bodytake) =

[
SD(bodytake, [0, 1, 2, 3], F)(v)
SD(bodytake, [0, 1, 2, 3], F)(a)

]

Propagating the canonical demand [0,1,2,3] into the body of take, we obtain
demands for the subexpressions of the with-loop:

SD(bodytake, [0, 1, 2, 3], F)

= SD
(
with(0 ∗ v <= iv < v) : sel(iv, a)
genarray(v, 0) , [0, 1, 2, 3], F

)

=

⎛
⎜⎜⎜⎜⎝

SD(v, [0, 1, 2, 3], F)
⊕ ( SD(sel(iv, a), [0, 1, 2, 3], F) \ {iv} )
⊕ SD(0, [0, 1, 2, 3], F)
⊕ SD(0 ∗ v, PV(λ iv . sel( iv, a))[0,1,2,3], F)
⊕ SD(v, PV(λ iv . sel( iv, a))[0,1,2,3], F)

⎞
⎟⎟⎟⎟⎠

The demand for the lower and upper bound expressions of the generator of the
with-loop is computed as demand for iv when propagating the actual demand
through the body expression sel( iv, a). This is done by first computing the
propagation vector for the pseudo-function λ iv . sel( iv, a):

PV(λ iv . sel( iv, a))
= [SD(sel(iv, a), [0, 1, 2, 3], F)(iv)]
= [{iv : [0, 2, 2, 3]}(iv)]
= [[0, 2, 2, 3]]

With this propagation the demand for the bounds can be computed by mapping
the actual demand [0,1,2,3] on a selection into [0,2,2,3] which yields [0,2,2,3].
With this demand we obtain

SD(v, PV(λ iv . sel( iv, a))[0,1,2,3], F)
= SD(v, [[0, 2, 2, 3]] , F)
= {v : [0, 2, 2, 3]}
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and
SD(0 ∗ v, PV(λ iv . sel( iv, a))[0,1,2,3], F) = {v : [0, 2, 2, 3]}

For the result shape we have
SD(v, [0, 2, 3, 3], F) = {v : [0, 2, 3, 3]}.

From the body expression a demand on a arises as
( SD(sel(iv, a), [0, 1, 2, 3], F) \ {iv} ) = {a : [0, 1, 2, 3]}.

As the default expression is constant we have
SD(0, [0, 1, 2, 3], F) = {}.

Taking these together, we eventually obtain
SD(bodytake, [0, 1, 2, 3], F) = {v : [0, 2, 3, 3], a : [0, 1, 2, 3]}

which gives

PV(λ v,a . bodytake) =
[

[0, 2, 3, 3]
[0, 1, 2, 3]

]
.

From this result, we can easily identify the non-uniformity in the first argument
position of take. If the shape of the result is required, the demand of the in-
dividual arguments can be derived from the third position in the propagation
vectors. They show that we do need to specialise the first argument wrt. to the
argument value while it suffices to specialise the second argument wrt. its shape.
Similarly, we obtain for create:

PV(λ s,x . bodytake) =
[

[0, 2, 3, 3]
[0, 1, 2, 3]

]
.

Having these in place, we can now infer the propagation for matmul:

PV(λ dl,dm,v . bodymm) =

⎡
⎣SD(bodymm, [0, 1, 2, 3], F)(dl)

SD(bodymm, [0, 1, 2, 3], F)(dm)
SD(bodymm, [0, 1, 2, 3], F)(v)

⎤
⎦

Propagating the canonical demand [0,1,2,3] into the body of matmul we obtain:
SD(bodymm, [0, 1, 2, 3], F)

= SD

⎛
⎝let

maind = dm ∗ v
in letbody

, [0, 1, 2, 3], F

⎞
⎠

=
(

SD(letbody, [0, 2, 3, 3], F)
⊕ SD(dm ∗ v, PV(λ maind . letbody)[0,1,2,3], F)

)

Since PV(λ maind . letbody) = [SD(letbody, [0, 1, 2, 3], F)(maind)] we can see
how the inference is driven bottom-up. Computing SD(letbody, [0, 1, 2, 3], F)
recursively leads us into the innermost goal expression, i.e., maind + concat(
zeros, lowerd). As both, addition and concatenation are uniform, we have
SD(maind+ concat(zeros, lowerd), [0, 1, 2, 3], F)

= {maind : [0, 1, 2, 3], zeros : [0, 1, 2, 3], lowerd : [0, 1, 2, 3]}
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From this, we obtain that
PV(λ zeros . maind + concat( zeros, lowerd))[0,1,2,3] = [0,1,2,3]

and thus

SD

⎛
⎝let

zeros = create( shape( dm) - shape( dl), 0)
in maind + concat( zeros, lowerd)

, [0, 1, 2, 3], F

⎞
⎠

=
(

{maind : [0, 1, 2, 3], zeros : [0, 1, 2, 3], lowerd : [0, 1, 2, 3]}
⊕SD(create(shape(dm)− shape(dl), 0), [0, 1, 2, 3], F)

)
.

Here, we have reached the most interesting aspect of the inference for matmul.
Although create is non-uniform, we expect this expression not to raise a de-
mand higher than [0,1,2,3] for the variables dm and dl. Following the inference
algorithm rules, we obtain:

SD(create(shape(dm)− shape(dl), 0), [0, 1, 2, 3], F)
= SD(shape(dm) − shape(dl), [0, 2, 3, 3], F)

as the constant 0 does not raise any demand. As subtraction is uniform the
demand that was raised to [0,2,3,3] by create is propagated into the individual
subexpression, i.e., we have

SD(shape(dm) − shape(dl), [0, 2, 3, 3], F)
= SD(shape(dm), [0, 2, 3, 3], F) ⊕ SD(shape(dl), [0, 2, 3, 3], F)

According to the rule for primitive functions, we obtain as demand for dm as well
as dl: [0,0,1,2][[0, 2, 3, 3]] = [0,1,2,2]. From this result, we can see that we obtain
a demand of [0,1,2,2] which is even lower than the expected demand [0,1,2,3].
Having a closer look at the expression, we can observe that the value of the
entire expression in fact does not depend on the values of dm and dl but their
shapes only.
Using this result, we obtain

SD

⎛
⎝let

zeros = create( shape( dm) - shape( dl), 0)
in maind + concat( zeros, lowerd)

, [0, 1, 2, 3], F

⎞
⎠

=
(

{maind : [0, 1, 2, 3], zeros : [0, 1, 2, 3], lowerd : [0, 1, 2, 3]}
⊕{dm : [0, 1, 2, 2], dl : [0, 1, 2, 2]}

)
.

Propagating that information further up, we obtain
SD(letbody, [0, 1, 2, 3], F)

= SD

⎛
⎝let

lowerd = dl * take( shape( dl), v)
in letbody2

, [0, 1, 2, 3], F

⎞
⎠

=
(

{maind : [0, 1, 2, 3], dm : [0, 1, 2, 2], dl : [0, 1, 2, 2]}
⊕ SD(dl ∗ take(shape(dl), v), [0, 1, 2, 3], F)

)
.

As we have
SD(dl ∗ take(shape(dl), v), [0, 1, 2, 3], F) = {dl : [0, 1, 2, 3], v : [0, 1, 2, 3]}
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we further obtain
SD(letbody, [0, 1, 2, 3], F)
= {maind : [0, 1, 2, 3], dm : [0, 1, 2, 2], dl : [0, 1, 2, 3], v : [0, 1, 2, 3]}

Note here how the multiplication with dl increases the overall demand for that
variable in the AKV case from AKS to AKV .
Eventually, we obtain for the entire body of matmul:

SD(bodymm, [0, 1, 2, 3], F)
= {dm : [0, 1, 2, 2], dl : [0, 1, 2, 3], v : [0, 1, 2, 3]} ⊕ SD(dm ∗ v, [0, 1, 2, 3], F)
= {dm : [0, 1, 2, 2], dl : [0, 1, 2, 3], v : [0, 1, 2, 3]} ⊕ {dm : [0, 1, 2, 3], v : [0, 1, 2, 3]}
= {dm : [0, 1, 2, 3], dl : [0, 1, 2, 3], v : [0, 1, 2, 3]}

Similar as with dl, the use of dm as factor increases the demand for dm. This
supports our intuitive result that matmul is a uniform function with

PV(λ dl,dm,v . bodymm) =

⎡
⎣ [0, 1, 2, 3]

[0, 1, 2, 3]
[0, 1, 2, 3]

⎤
⎦.

8 Related Work

Generic programming on arrays can also be found in the programming language
Fish [JMB98, JS98]. It is based on the idea to divide up all functions into two
parts: one part that describes the actual computation of values and another
part that describes the computation of result shapes from argument shapes.
While the former is implemented at runtime, the latter is done statically by
the compiler. This separation eases the specialisation as the static parts are
identified by the programmer. In fact, it can be considered an offline approach
to partially evaluating Fish programs. However, specialisation wrt. argument
values in Fish cannot happen since all shape computations need to be defined
in terms of argument shapes only. This vastly simplifies the specialisation process
but comes at the price of lack in expressiveness. Only uniform array operations
can be defined which immediately rules out the definition of operations such as
take or create.

A similar situation can be found in the C++ based approach to generic ar-
ray programming called Blitz [Vel98]. There, the rank information is made a
template parameter which is resolved statically. Using the template mechanism
as a tool for partial evaluation (for details see [Vel99]) results in rank specific
C code that — at compile time — is derived from otherwise generic program
specifications. This way, similar to the Fish approach, the rank computation is
strictly separated from the value computation, as the template mechanism in
C++ is strictly separated from the rest of the language.

Further work on specialising generic programs for data types rather than
values can be found in the context of algebraic data types (ADT for short). Pro-
grams that are defined on generalisations of ADTs as they can be found in the
generics of Clean [Ali05], the generic type classes of the Glasgow Haskell Com-
piler [HP00] or in Generic-Haskell [CHJ+01], when left unspecialised, lead
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to significant runtime overhead [AS04]. To ameliorate that problem, Alimarine
and Smetsers in [AS04] propose specialisation to data types throughout generic
programs. They show that for non-recursive data types this specialisation can
be done always without risking non-termination which suggests a brute-force
approach similar to online partial evaluation. Although this is similar to the
specialisation approach in generic array programming there is a major difference
to be observed: in Clean, the underlying type system precludes types to depend
on argument values. As a consequence, generic array programming that would
allow definitions of functions such as take or create can only be done, if array
shapes are part of the data itself. In that case specialisation beyond the level of
data types would be required which is outside the scope of the work described
in [AS04].

9 Conclusions

This paper proposes an inference algorithm for analysing the relation between
the shapes of arguments and the shapes of return values of function definitions
in a first order functional array language. It determines for each function which
level of argument shape knowledge is required in order to determine a certain
level of return shape knowledge. This information can be used to steer function
specialisation in a way that ensures that all shapes are computed statically,
whenever possible. Once all functions are specialised to appropriate level, the
provided shape information can be utilised for various optimisations that are
essential for achieving highly efficient runtime behaviour.

With this apparatus at hand, abstractions can be chosen freely without
preventing the compiler from applying sophisticated optimisations that are re-
stricted to the intra-procedural case. As a consequence, non-uniform functions
such as take can be used as building blocks for large applications without intro-
ducing considerable runtime degradation.
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